Research uncovers new protein to treat damaged bones

January 10, 2013
Research uncovers new protein to treat damaged bones
Osteoblasts actively synthesizing new bone. Credit: Robert M. Hunt via CC 3.0

Korean researchers believe that the 'DJ-1 protein' can be used to promote the formation of new bone tissue in patients suffering from osteoporosis by improving communication between bone making cells (osteoblasts) and blood vessel (endothelial) cells. The research was published in Nature Communications.

Professor Pann-Gill Suh and Dr. Jung-Min Kim at the School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) identified DJ-1 as a novel mediator of the cross-talk between osteoblasts and by screening molecules secreted from as yet undifferentiated human skeletal cells. These skeletal cells, also known as , have the ability to develop into fully fledged bone cells (osteoblasts).

The researchers showed that DJ-1 stimulates the differentiation of the yet undifferentiated skeletal cells into bone cells by activating fibroblasts, cells which in turn ensure connective tissue growth. Working with rodents, they were able to uncover previously undefined extracellular roles of DJ-1, to promote angiogenesis and osteogenesis, suggesting DJ-1 may have therapeutic potential to stimulate .

Explore further: New method for creating long-lived stem cells used for bone replacement

More information: "DJ-1 promotes angiogenesis and osteogenesis by activation FGF receptor-1 signaling": www.nature.com/ncomms/journal/ … full/ncomms2313.html

Related Stories

New method for creating long-lived stem cells used for bone replacement

December 4, 2012
Human mesenchymal stem cells (hMSCs) can develop into bone cells and are useful for tissue engineering and regeneration. However, when grown in the laboratory they quickly lose their ability to continue dividing and they ...

Restoring what's lost: Uncovering how liver tissue regenerates

March 12, 2012
The liver is unique among mammalian organs in its ability to regenerate after significant tissue damage or even partial surgical removal.

Recommended for you

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.