Interleukin-22 protects against post-influenza bacterial superinfection

Researchers from the Pasteur Institute, Lille, France have shown in a mouse model that interleukin-22 protects against bacterial superinfections that can arise following influenza. Their research is published in the June 2013 issue of the Journal of Virology.

Influenza A viral infection can lead to primary pneumonia and, later on, to serious complications including secondary and sepsis. Post-influenza bacterial superinfections that occur during seasonal epidemics and pandemics are of great concern to human health and impose a considerable socio-economic burden.

"It is therefore critical that we reach a better understanding of the causes of and potential treatments for post-influenza bacterial superinfection," says corresponding author François Trottein.

"Mouse studies have revealed that impairment of the host innate , as well as lung damage caused by the virus are cardinal features of bacterial superinfection," says Trottein. The authors tested the hypothesis that -22, an important cytokine implicated in mucosal immunity, inflammation and tissue repair, might play an important role during influenza.

The authors show that several cell types belonging to the produce interleukin-22 soon after infection. They also demonstrate that the lack of interleukin-22 aggravates the pathogenesis that develops in the lungs and in particular exacerbates epithelial damage caused by the virus. Furthermore, endogenous interleukin-22 displays a protective role during secondary bacterial (pneumococcus) infection in the mouse system.

Although the mechanisms sustaining the protective effect of interleukin-22 are not yet fully elucidated, the authors speculate that its beneficial effect is due to its role in the maintenance of epithelial integrity.

"If it works as well in humans, the production of interleukin-22 could confer a substantial benefit on patients having flu," says Trottein.

More information: S. Ivanov, J. Renneson, F. Trottein, et al. Interleukin-22 reduces lung inflammation during influenza A virus infection and protects against secondary bacterial infection. J. Virol. June 2013; 87:12 6911-6924. Published ahead of print17 April 2013. doi:10.1128/JVI.02943-12

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Gamers helping in Ebola research

14 hours ago

Months before the recent Ebola outbreak erupted in Western Africa, killing more than a thousand people, scientists at the University of Washington's Institute for Protein Design were looking for a way to stop the deadly virus.

Carcinogenic role of a protein in liver decoded

16 hours ago

The human protein EGFR controls cell growth. It has mutated in case of many cancer cells or exists in excessive numbers. For this reason it serves as a point of attack for target-oriented therapies. A study ...

A new way to diagnose malaria, using magnetic fields

Aug 31, 2014

Over the past several decades, malaria diagnosis has changed very little. After taking a blood sample from a patient, a technician smears the blood across a glass slide, stains it with a special dye, and ...

User comments