Identifying key regulators of kidney injury

May 9, 2013

(Medical Xpress)—Micro-RNAs (miRNAs) are a recently discovered class of RNA molecules that regulate how genes are expressed. UCD researchers led by Conway Fellow, Professor Catherine Godson are studying the role of miRNAs in diabetic kidney disease.

They have described for the first time how the miRNA family, let-7 miRNA, plays a key role in regulating kidney injury by targeting key fibrosis pathways in human kidney epithelial cells.

The team investigated the miRNA responses in human kidney tubule epithelial cells cultured under fibrotic conditions that mimic and in the presence of anti- lipoxin A4 to suppress fibrosis.

'Promoting the resolution of inflammation makes for an interesting that could reduce the risk of developing diabetic kidney disease. We believe that the lipoxins involved in regulating this process may be acting through miRNA mechanisms', said Dr Eoin Brennan, first author of the published article in the Journal of the American Society of Nephrology.

The extent of let-7c miRNA expression seems to impact on the integrity of epithelial cells as the study found less let-7c miRNA expression in injured epithelial cells than in healthy cells.

'The next step for us now is to determine if let-7 miRNAs can actually play a role as biomarkers of diabetic kidney disease and we will do this by measuring expression in both urine and of patients,' said Professor Catherine Godson from UCD School of Medicine & Medical Science.

'We will also investigate the therapeutic potential of let-7c delivery to the kidney in experimental models of disease. These studies will further enhance our understanding of the role of in diabetic kidney disease as both biomarkers and potential novel therapeutic targets.'

The global prevalence of diabetes is predicted to reach 4.4% by 2030, an approximate doubling of the levels in 2000. Up to 40% of patients with diabetes (type 1 and type 2) will develop kidney damage. There is a significant unmet clinical need for sensitive and specific biomarkers of disease progression and effective treatments for diabetic kidney disease.

Explore further: Researchers replicate human kidney gene changes in mouse model

More information: Brennan, E. et al. Lipoxins attenuate renal fibrosis by induction of let-7c and suppression of TGFβR1. Journal of the American Society of Nephrology, 2013 (24(4):627-637).

Related Stories

Vitamin B derivative helps diabetics with mild kidney disease

October 27, 2011

A vitamin B6 derivative may help slow or prevent the progression of mild kidney disease in patients with diabetes, according to a study appearing in an upcoming issue of the Journal of the American Society Nephrology (JASN). ...

Research aims to prevent diabetic kidney failure

November 5, 2011

The enzyme arginase-2 plays a major role in kidney failure, and blocking the action of this enzyme might lead to protection against renal disease in diabetes, according to researchers.

Recommended for you

Monkeys in Asia harbor virus from humans, other species

November 19, 2015

When it comes to spreading viruses, bats are thought to be among the worst. Now a new study of nearly 900 nonhuman primates in Bangladesh and Cambodia shows that macaques harbor more diverse astroviruses, which can cause ...

One-step test for hepatitis C virus infection developed

November 14, 2015

UC Irvine Health researchers have developed a cost-effective one-step test that screens, detects and confirms hepatitis C virus (HCV) infections. Dr. Ke-Qin Hu, director of hepatology services, will present findings at the ...

Computer model reveals deadly route of Ebola outbreak

November 10, 2015

Using a novel statistical model, a research team led by Columbia University's Mailman School of Public Health mapped the spread of the 2014-2015 Ebola outbreak in Sierra Leone, providing the most detailed picture to date ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.