New perspective needed for role of major Alzheimer's gene

May 7, 2013 by Michael C. Purdy

(Medical Xpress)—Scientists' picture of how a gene strongly linked to Alzheimer's disease harms the brain may have to be revised, researchers at Washington University School of Medicine in St. Louis have found.

People with harmful forms of the APOE gene have up to 12 times the risk of developing Alzheimer's disease compared with those who have other variations of the gene.

Many researchers believe that the and of Alzheimer's result from the buildup over many years of brain . The plaques are made mostly of a sticky substance called .

For years, researchers have thought that the increases Alzheimer's risk by producing a protein that binds to amyloid beta. Scientists thought that this bond could make it easier for plaques to form.

But in a new study now available online in the Proceedings of the National Academy of Sciences, Washington University researchers show that APOE and amyloid beta don't bind together in cerebrospinal fluid and in fluids present outside cells grown in dishes. This means they are unlikely to bind together in the fluids circulating in the brain. The cerebrospinal fluid was taken from people who were cognitively normal but have forms of APOE that increase the risk of Alzheimer's.

"This is the first time we've looked at naturally produced APOE and amyloid beta to see if and how much they bind together, and we found that they have very little interaction in the fluids bathing the brain," said David M. Holtzman, MD, the Andrew B. and Gretchen P. Jones Professor and head of . "This suggests that we may need to rethink any that target APOE to slow amyloid and Alzheimer's."

According to Holtzman, leading Alzheimer's researchers recently agreed that targeting APOE is a promising approach both for gaining a better understanding of and improving treatments for Alzheimer's. But to do that, scientists must first fully understand how the harmful forms of APOE increase risk of the disease.

"APOE is a major player in Alzheimer's, there's no question about that," said Philip Verghese, PhD, a postdoctoral research associate. "We did some additional studies in mice and cell cultures that suggested the APOE protein may be blocking a pathway that normally helps degrade amyloid beta."

APOE is involved in the metabolism of fats, cholesterol and vitamins throughout the body. Scientists have identified three different forms of the gene that each make a slightly different version of the protein.

One version, APOE 2, produces a protein that significantly reduces Alzheimer's risk. Another, APOE 4, increases risk. Each person has two copies of the gene, and if both copies are APOE 4, the chance of developing Alzheimer's rises dramatically.

"About 60 percent of the patients we see in the Alzheimer's clinics have at least one copy of APOE 4," Holtzman said. "In contrast, only about 25 percent of cognitively normal 70-year-olds have a copy of APOE 4."

Verghese tested cerebrospinal fluid samples from people who had either two copies of APOE 4 or two copies of APOE 3, another form of the gene that is not associated with increased Alzheimer's risk.

"We also found that APOE 2, the protective form of the protein, doesn't bind to amyloid beta in body fluids," Verghese said.

In follow-up studies, Verghese showed that APOE and amyloid beta "compete" to bind to a receptor on support cells in the brain known as astrocytes.

"Studies by other researchers have shown that astrocytes can degrade amyloid beta," Verghese said. "The receptor we identified may be important for getting amyloid beta into the astrocyte so it can be broken down. It's possible that when the harmful forms of APOE bind to the receptor, this reduces the opportunities for amyloid to be degraded."

The researchers are planning follow-up studies of the effects of APOE-blocking treatments in mice.

Explore further: Malfunctioning protein a cause of Alzheimer's plaques

More information: Verghese, P. et al. ApoE influences amyloid beta clearance despite minimal apoE/amyloid-beta association in physiological conditions. Proceedings of the National Academy of Sciences, published online.

Related Stories

Malfunctioning protein a cause of Alzheimer's plaques

June 30, 2011

(Medical Xpress) -- In a new study published in Science Translational Medicine, scientists from the Washington University School of Medicine in St Louis reveal their discovery of a protein made by an Alzheimer’s gene ...

Genetic markers ID second Alzheimer's pathway

April 4, 2013

Researchers at Washington University School of Medicine in St. Louis have identified a new set of genetic markers for Alzheimer's that point to a second pathway through which the disease develops.

Recommended for you

Researchers grow retinal nerve cells in the lab

November 30, 2015

Johns Hopkins researchers have developed a method to efficiently turn human stem cells into retinal ganglion cells, the type of nerve cells located within the retina that transmit visual signals from the eye to the brain. ...

Shining light on microbial growth and death inside our guts

November 30, 2015

For the first time, scientists can accurately measure population growth rates of the microbes that live inside mammalian gastrointestinal tracts, according to a new method reported in Nature Communications by a team at the ...

Functional human liver cells grown in the lab

November 26, 2015

In new research appearing in the prestigious journal Nature Biotechnology, an international research team led by The Hebrew University of Jerusalem describes a new technique for growing human hepatocytes in the laboratory. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.