Researchers find key to blood-clotting process

June 26, 2013
Researchers find key to blood-clotting process

Researchers, including Professor Alastair Poole and Dr Matthew Harper from the University of Bristol's School of Physiology and Pharmacology, have uncovered a key process in understanding how blood clots form that could help pave the way for new therapies to reduce the risk of heart attacks.

The research, carried out in collaboration with researchers from the Universities of Homburg and Heidelberg in Germany, the National Institutes of Health in the USA and University College London, focuses on the action of platelets in the blood clotting process.

These platelets are very small cells in our blood that are essential to blood clotting when we damage a blood vessel. Unfortunately, platelet clots can also block blood vessels in the heart, leading to heart attacks.

When blood vessels are damaged they expose the and produce , which then trigger the platelets to create a clot or thrombus. It has been known for some time that platelets are activated much more strongly if they detect both collagen and at the same time, but until now it has been a puzzle as how this happens.

Now the research from Bristol and others, which is published today [25 June] in the journal Science Signalling, has shown that platelets respond to simultaneous exposure to these two strong signals by opening a channel in their , made up of the proteins TRPC3 and TRPC6.

This channel, which is not opened if platelets detect only one of the damage signals, allows to penetrate the and that triggers the to expose a procoagulant surface, which means that they generate more thrombin. This can lead to a vicious cycle of more platelet activation, the generation of more thrombin and bigger clots.

Explore further: Blood cell breakthrough could help treat heart disease

Related Stories

Blood cell breakthrough could help treat heart disease

April 27, 2012

( -- Scientists at the University of Reading have made a groundbreaking discovery into the way blood clots are formed, potentially leading to the development of new drugs to treat one of the world's biggest killer ...

Recommended for you

Gut microbes signal to the brain when they are full

November 24, 2015

Don't have room for dessert? The bacteria in your gut may be telling you something. Twenty minutes after a meal, gut microbes produce proteins that can suppress food intake in animals, reports a study published November 24 ...

New findings offer hope for diabetic wound healing

November 23, 2015

University of Notre Dame researchers have discovered a compound that accelerates diabetic wound healing, which may open the door to new treatment strategies. Non-healing chronic wounds are a major complication of diabetes, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.