Researchers find key to blood-clotting process

Researchers find key to blood-clotting process

Researchers, including Professor Alastair Poole and Dr Matthew Harper from the University of Bristol's School of Physiology and Pharmacology, have uncovered a key process in understanding how blood clots form that could help pave the way for new therapies to reduce the risk of heart attacks.

The research, carried out in collaboration with researchers from the Universities of Homburg and Heidelberg in Germany, the National Institutes of Health in the USA and University College London, focuses on the action of platelets in the blood clotting process.

These platelets are very small cells in our blood that are essential to blood clotting when we damage a blood vessel. Unfortunately, platelet clots can also block blood vessels in the heart, leading to heart attacks.

When blood vessels are damaged they expose the and produce , which then trigger the platelets to create a clot or thrombus. It has been known for some time that platelets are activated much more strongly if they detect both collagen and at the same time, but until now it has been a puzzle as how this happens.

Now the research from Bristol and others, which is published today [25 June] in the journal Science Signalling, has shown that platelets respond to simultaneous exposure to these two strong signals by opening a channel in their , made up of the proteins TRPC3 and TRPC6.

This channel, which is not opened if platelets detect only one of the damage signals, allows to penetrate the and that triggers the to expose a procoagulant surface, which means that they generate more thrombin. This can lead to a vicious cycle of more platelet activation, the generation of more thrombin and bigger clots.

Related Stories

How life-threatening blood clots take hold

Apr 16, 2009

When plaques coating blood vessel walls rupture and expose collagen, platelets spring into action to form a blood clot at the damaged site. Now, a new report in the April 17th issue of the journal Cell, a Cell Press public ...

Blood cell breakthrough could help treat heart disease

Apr 27, 2012

(Phys.org) -- Scientists at the University of Reading have made a groundbreaking discovery into the way blood clots are formed, potentially leading to the development of new drugs to treat one of the world's ...

Math predicts size of clot-forming cells

May 25, 2012

UC Davis mathematicians have helped biologists figure out why platelets, the cells that form blood clots, are the size and shape that they are. Because platelets are important both for healing wounds and in strokes and other ...

Recommended for you

Growing a blood vessel in a week

2 hours ago

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

5 hours ago

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments