Pluripotent stem cell-derived neurons may be a viable Parkinson's disease treatment

A team of researchers from Rush University, Yale University, the University of Colorado and the St. Kitts Biomedical Research Foundation transplanted human embryonic stem cells into primate laboratory animals modeled with Parkinson's disease and found "robust survival" of the cells after six weeks and indications that the cells were "well integrated" into the host animals. The study appears as an early e-publication for the journal Cell Transplantation.

"Parkinson's disease was one of the first neurological disorders to be studied for potential replacement of lost neurons," said Dr. D. Eugene Redmond of Yale University School of Medicine. "Since the 1970s there has been significant progress with learning the required gene expression, growth factors and culture conditions for differentiating cells into apparent dopamine neurons."

However, the researchers noted that transplanted dopamine neurons have not produced "long-lasting midbrain specific neurons when transplanted into rodents or monkeys" and there have only been pilot reports of functional improvement.

According to the study authors, their study tested the long-term survival and functional benefit of apparent dopamine neurons in monkeys modeled with Parkinson's disease. As with other studies, their results found that the gene expression of the rate limiting for dopamine production, tyrosine hydroxylase (TH), was "transient" after transplantation, raising questions about the optimal cell stage and culture environment that favor and the factors that could impact . Once more, a more robust immunosuppression regimen than employed in other primate studies resulted in better cell survival.

"Our results demonstrate that pluripotent stem cell line-derived neurons retain the capacity to robustly survive and respond to cues in the ," they wrote. "The absence of TH expression indicates that other methods may be necessary to produce and maintain the proper midbrain dopaminergic form of the cells in vivo."

While their study demonstrated robust survival of the cells, the researchers said that longer term studies are required to better understand what factors may impact long-term function replacement and whether they demonstrate significant reversal of parkinsonism, tumor formation or dyskinesias, the latter being a side effect of current treatments for Parkinson's Disease.

More information: Cell Transplantation. www.ingentaconnect.com/content… prints/ct1000wakeman

Related Stories

Generating dopamine via cell therapy for Parkinson's disease

Jul 02, 2012

In Parkinson's disease, the loss of dopamine-producing cells in the midbrain causes well-characterized motor symptoms. Though embryonic stem cells could potentially be used to replace dopaminergic (DA) neurons in Parkinson's ...

Recommended for you

Cellular protein may be key to longevity

13 hours ago

Researchers have found that levels of a regulatory protein called ATF4, and the corresponding levels of the molecules whose expression it controls, are elevated in the livers of mice exposed to multiple interventions ...

Gut bacteria tire out T cells

15 hours ago

Leaky intestines may cripple bacteria-fighting immune cells in patients with a rare hereditary disease, according to a study by researchers in Lausanne, Switzerland. The study, published in The Journal of Experimental Me ...

T-bet tackles hepatitis

16 hours ago

A single protein may tip the balance between ridding the body of a dangerous virus and enduring life-long chronic infection, according to a report appearing in The Journal of Experimental Medicine.

User comments