Dopamine-producing neurons derived from bone marrow stem cells yield improvements in monkeys with Parkinson's disease

April 22, 2013
Figure 1: Brain scans showing the distribution of dopamine transporter (DAT) in the brain of a monkey before (left) and after (right) implantation of dopamine-producing neurons derived from the monkey’s own mesenchymal stem cells. Credit: 2013 American Society for Clinical Investigation

Parkinson's disease is a neurodegenerative disorder characterized by the death of dopamine-producing neurons in the midbrain, resulting in motor symptoms such as tremors and stiffness. The cause of cell death remains unknown and researchers have long sought a way to replace the lost dopamine-producing cells. A study led by Takuya Hayashi from the RIKEN Center for Molecular Imaging Science now suggests that in monkeys such neurons can be derived from bone marrow stem cells and then transplanted back into the brain to reverse the symptoms of this devastating disease.

Hayashi, Mari Dezawa from Tohoku University and their colleagues injected ten adult male cynomolgus monkeys (crab-eating macaques) with a neurotoxin that induces a Parkinson's-like condition. They then obtained bone marrow samples from the monkeys, isolated the marrow's (MSCs), and treated the cells with growth factors to direct them to differentiate into A9 —the neuronal subtype that is most severely damaged in Parkinson's patients. The researchers subsequently transplanted the differentiated cells back into the forebrain of five of the donor monkeys, while the other five animals received a sham operation.

The procedure is an example of an 'autologous' transplantation, involving cells derived from and transferred to the same individual. Autologous transplantation eliminates the possibility of , making this approach attractive for eventual use in the clinic.

Several months later, the treated monkeys, but none of the untreated subjects, exhibited improvements in motor behaviors, such as performance in a hand-reach task. Positron scans of the cell-engrafted monkeys' brains revealed a dramatic increase in the expression of dopamine transporter (DAT), a membrane-spanning protein that helps clear dopamine from the synapse (Fig. 1).

DAT expression in monkeys that received the transplanted neurons remained above pre-treatment baseline levels for more than seven months after the operation. Further analyses at nine months demonstrated the existence of cells positive for DAT and other markers indicative of dopaminergic neuron function in the engrafted striatum—the forebrain region in which the MSC-derived neurons were implanted. The findings are consistent with functional integration and survival of the transplanted tissue.

Hayashi next plans to compare the efficacy of transplanting differentiated versus native MSCs in this monkey model. He also hopes to start translating his system for human applications. "Our newly developed system of cell-based therapy restored motor function of animal models with Parkinson's disease," says Hayashi. "We should now test whether we can derive functional and viable dopaminergic cells from human MSCs."

Explore further: Stem cell-derived dopaminergic neurons rescue motor defects in Parkinsonian monkeys

More information: Hayashi, T. et al. Autologous mesenchymal stem cell-derived dopaminergic neurons function in parkinsonian macaques. The Journal of Clinical Investigation 123, 272–284 (2012). dx.doi.org/10.1172/JCI62516

Related Stories

Stem cell-derived dopaminergic neurons rescue motor defects in Parkinsonian monkeys

December 3, 2012
Parkinson's disease is a degenerative disorder of the central nervous system that is characterized by tremors, rigidity, slowness of movement, and difficulty walking. It is caused by loss of the neurons that produce the neurotransmitter ...

Generating dopamine via cell therapy for Parkinson's disease

July 2, 2012
In Parkinson's disease, the loss of dopamine-producing cells in the midbrain causes well-characterized motor symptoms. Though embryonic stem cells could potentially be used to replace dopaminergic (DA) neurons in Parkinson's ...

Reprogramming brain cells important first step for new Parkinson's therapy, study finds

December 13, 2011
(Medical Xpress) -- In efforts to find new treatments for Parkinson’s Disease (PD), researchers from the Perelman School of Medicine at the University of Pennsylvania have directly reprogrammed astrocytes, the most plentiful ...

Stem cell implants boost monkeys with Parkinson's

February 22, 2012
Monkeys suffering from Parkinson's disease show a marked improvement when human embryonic stem cells are implanted in their brains, in what a Japanese researcher said Wednesday was a world first.

Recommended for you

Investigating the most common genetic contributor to Parkinson's disease

October 19, 2017
LRRK2 gene mutations are the most common genetic cause of Parkinson's disease (PD), but the normal physiological role of this gene in the brain remains unclear. In a paper published in Neuron, Brigham and Women's Hospital ...

Scientists solve 3-D structure of key defense protein against Parkinson's disease

October 5, 2017
Scientists at the University of Dundee have identified the structure of a key enzyme that protects the brain against Parkinson's disease.

Novel protein interactions explain memory deficits in Parkinson's disease

September 26, 2017
A study published in the journal Nature Neuroscience describes the identification of a novel molecular pathway that can constitute a therapeutic target for cognitive defects in Parkinson's disease. The study showed that abnormal ...

Psychosis in Parkinson's dementia—new treatment provides hope

September 25, 2017
New research involving King's College London and the University of Exeter has highlighted the benefits of a promising new treatment which could relieve psychosis in thousands of people with dementia related to Parkinson's ...

Bicycling 'overloads' movement networks with Parkinson's

September 23, 2017
(HealthDay)—Bicycling suppresses abnormal beta synchrony in the Parkinsonian basal ganglia, according to a study published online Sept. 11 in the Annals of Neurology.

Researchers find new path to promising Parkinson's treatment

September 19, 2017
Three researchers at The University of Alabama are part of work that is leading to a new direction for drug discovery in the quest to treat Parkinson's disease.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.