Team creates realistic 3-D tumour through tissue engineering using silk scaffolds

A team of NUS researchers from the Departments of Bioengineering and Orthopaedic Surgery has developed a highly realistic three-dimensional (3-D) tumour model. As it replicates the conditions in the body, it is able to track the effectiveness and progress of drug therapy. Their model has the potential to be a more effective method for studying tumours than in-vitro and even in-vivo methods.

The team comprised Professor James Goh, Associate Professor Toh Siew Lok and Dr Pamela Tan from the Department of Bioengineering at NUS Faculty of Engineering, and Associate Professor Saminathan Suresh Nathan from the Department of Orthopaedic Surgery at the NUS Yong Loo Lin School of Medicine, who carried out their study using , which is the most prevalent form of paediatric primary .

Reconstructing tumours in the laboratory has been a hot topic for research as current methods of testing have not been sufficient to yield concrete results.

Dr Tan, who has been researching on the 3-D model for her PhD thesis, said: "Despite the urgent need to develop , little progress has been made due to the lack of good pre-clinical drug testing models. Current laboratory drug testing methods yield results that differ largely from because of the use of 2-D cell culture systems which cannot replicate the 3-D properties of the ."

In in-vitro testing, cell culture systems are largely 2-D, hence, lack the structural features of the 3-D microenvironment. On the other hand, it is not feasible to carry out large-scale molecular biology research using in-vivo experiments. Furthermore, society has become increasingly concerned about the use of animals in experimentation.

Prof Goh said that , a major focus of study at the Department of , can help bridge these gaps, thereby establishing a more physiological 3-D in-vitro model. The team made use of techniques from tissue engineering to fabricate the 3-D tumour model and reconstructed the tumour tissue into factors and cell types in order to form a clinically relevant tumour.

The team decided to use silk to fabricate the scaffolds onto which the osteosarcoma cells were grown because it has been demonstrated to have excellent properties for cell attachment and growth.

Their 3-D tumour construct gives results that are much closer to those obtained from in-vivo studies, as compared to 2-D in-vitro studies. When chemotherapeutic drugs (which target aggressively growing cells) were tested on the 3-D tumour constructs, their effectiveness in killing cancer cells was greatly reduced, compared to testing the same drugs using the standard 2-D system. Moreover, the therapeutic doses found using the 3-D tumour constructs was within those measured in mice, indicating that the constructs have the potential to help bridge the gap between laboratory and animal testing, in order to improve the yield and quality of chemotherapeutic drug screening.

This is also the first time that a realistic 3-D tumour has been constructed in a laboratory using silk scaffolds in a pressurised bioreactor. Their 3-D bioreactor tumour model was able to express markers that indicate the ability of a tumour to initiate blood vessel growth at levels almost identical to that of the mouse model. The tumour constructs also responded to drugs that prevent blood vessel formation in a manner similar to that observed clinically.

"Our also makes it possible to study how tumour cells interact with cells of the surrounding tissue, which results in more aggressive tumour behaviour," added Dr Tan.

The team has been developing the concept of the tumour microenvironment as an important determinant of tumour behaviour over the last 10 years.

Said Assoc Prof Nathan, "Dr Tan's recent contribution has shed remarkable insight into mechanisms of angiogenesis that were previously taken for granted and may now have to be re-addressed. Clinically this will have significant bearing on other drugs as well."

"We will in future be expanding our findings to other cancers and incorporating other aspects of the tumour like oxygen levels within the system to ultimately create a platform for testing that could save much in downstream applications of experimental drugs," he added.

add to favorites email to friend print save as pdf

Related Stories

Immune system to fight brain tumors

May 30, 2013

Research at Lund University in Sweden gives hope that one of the most serious types of brain tumour, glioblastoma multiforme, could be fought by the patients' own immune system. The tumours are difficult to remove with surgery ...

Brain tumour cells killed by anti-nausea drug

Mar 18, 2013

(Medical Xpress)—New research from the University of Adelaide has shown for the first time that the growth of brain tumours can be halted by a drug currently being used to help patients recover from the side effects of ...

Recommended for you

Discovery could lead to new cancer treatment

21 hours ago

A team of scientists from the University of Colorado School of Medicine has reported the breakthrough discovery of a process to expand production of stem cells used to treat cancer patients. These findings could have implications ...

Is the HPV vaccine necessary?

Aug 29, 2014

As the school year starts in full swing many parents wonder if their child should receive the HPV vaccine, which is recommended for girls ages 11-26 and boys 11-21. There are a lot of questions and controversy around this ...

User comments