Cells in the early embryo battle each other to death for becoming part of the organism

Left; An early mouse embryo has been generated in a genetic mosaic of two cell populations, green and blue. Center, three days later, the green cells, in which Myc protein increased, have won the battle and removed the blue. Right, This shows more Myc cell (green) engulfing its neighbor. Credit: CNIC

Spanish researchers at the Centro Nacional de Investigaciones Cardiovasculares (CNIC) have found that during the early stages of mammalian development, embryonic cells embark on a battle for survival. Through this battle, the less active of these cells are eliminated by their stronger sisters. The work is published today in the prestigious journal Nature.

This phenomenon, termed cell competition, occurs in a defined , between days 3 and 7 of mouse development. During this period all compete with each other, as explained by Dr. Cristina Claveria, first author of the study, and Dr. Miguel Torres, director of this work and Head of the Department of Cardiovascular Development and Repair at CNIC.

"Thanks to cell competition the developing organism optimizes itself by selecting the cells theoretically more capable of supporting vital functions throughout the life of the new individual," says Dr. Claveria. According to the authors, this would be particularly important in long-lived , like humans, where the functionality of their tissues must be maintained throughout a long life.

Dr. Miguel Torres also explains that when cell competition is prevented, cells that normally would have lost the battle now become able to contribute to the new organism: "We think, however, that this organism will probably be less capable than the one which would have been formed under normal circumstances. In what sense will it be less adequate is a matter of great interest that we will address in the coming years".

Indeed, the researchers are able to determine in advance which cells will win this battle: those with higher levels of the Myc protein, an important controller of cell metabolic capacity. Moreover, using a new technique that they have developed for the production of genetic , they are able to manipulate the levels of Myc protein in cells, thus changing the outcome of the fight.

According to Claveria and Torres, the study shows that the early embryo is a mosaic of cells with very different levels of Myc ,in which cells with higher levels of Myc eliminate those with lower levels. However, it is important to understand that those who die are viable cells. "Their removal occurs only because the embryo has more suitable cells able to replace them, and therefore this is an optimization mechanism, not a repair one," the researchers point out.

A fascinating aspect of the work is the illustration that this battle does not waste cellular resources; dying loser cells are engulfed and digested by their winning neighbours, who then recycle and use all the nutrients for the benefit of the embryo. This research provides answers to some of the questions raised nearly forty years ago by Spanish scientists Ginés Morata and Pedro Ripoll, who in 1975 discovered cell competition in the fruit fly. On that occasion, by experimental manipulation, they described the in the fly's wing. Since then cell competition has been suggested to be involved in multiple processes, including tumour progression and regeneration; but never, until this study, had a natural function been described.

More information: Myc-driven endogenous cell competition in the early mammalian embryo, DOI: 10.1038/nature12389

Journal reference: Nature search and more info website

Provided by Centro Nacional de Investigaciones Cardiovasculares

5 /5 (5 votes)

Related Stories

Why tumor cells leave home

Jun 11, 2013

(Medical Xpress)—Malignant cells can escape from primary tumors and colonize new sites in other tissues. In a new study, LMU researchers show how the transcription factor AP4 promotes the development of ...

New insights on cell competition

Sep 14, 2012

Scientists from the Spanish National Cancer Research Centre (CNIO) describe how natural selection also occurs at the cellular level, and how our body's tissues and organs strive to retain the best cells in their ranks in ...

Researchers show Myc protein is cancer's 'volume control'

Oct 01, 2012

(Medical Xpress)—A protein called Myc, commonly found at high levels inside cancer cells, fuels the disease by allowing cells to override their in-built self-destruct mechanisms, according to two new studies by US scientists.

Recommended for you

Growing a blood vessel in a week

Oct 24, 2014

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

Oct 24, 2014

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments