Researchers find promising new angle for drugs to prevent stroke and heart attack

Platelets, which allow blood to clot, are at the heart of numerous cardiovascular problems, including heart attacks and stroke. New research has uncovered a key platelet protein that could offer a new angle for developing drugs to prevent thrombosis, or dangerous blood clots, in patients who are at high risk such as those with atherosclerosis or a history of heart problems.

"I think we're at the start of an exciting journey of for a new class of antithrombotic therapies," said lead study author Stephen Holly, PhD, assistant professor of biochemistry and at the University of North Carolina School of Medicine. This work was performed in collaboration with senior authors Leslie Parise, PhD, at UNC and Benjamin Cravatt, PhD, at The Scripps Research Institute.

The study was published online August 29 ahead of print in the journal Chemistry & Biology and funded by grants from the American Heart Association and the National Institutes of Health.

In the human circulatory system, platelets are something of a double-edged sword. Without their clotting abilities, even a minor injury could result in potentially fatal bleeding. But during a or stroke, platelets form a clot that can potentially block blood flow through our veins and arteries, a dangerous condition called thrombosis, which can deprive tissues of oxygen and lead to death.

Several antithrombotic drugs are available, but some have been found to cause bleeding—a side effect that is particularly troublesome when these drugs are used to prevent thrombosis in people undergoing heart surgery. "There's still room for improvement, in terms of making an ideal drug that can block platelet function without initiating bleeding," said Dr. Holly.

Dr. Holly and his colleagues uncovered several potential drug targets using a screening technique that has never before been applied to the cardiovascular system. The technique, called activity-based protein profiling, has been used in cancer research and allows researchers to track the actual activities of proteins operating within a cell. The team first pre-screened human platelets to narrow the field of drug-like compounds, then generated an activity-based protein profile using one of these compounds to single out proteins that play a role in platelet activation.

The hunt was successful. "Using this technique, we discovered both novel inhibitors of platelet activation and a novel enzyme involved in platelet signaling," said Holly.

This new knowledge of platelets' natural "on-off" switches could be exploited to develop drugs that keep from forming pathological blood clots. As a next step, the researchers hope to investigate the proteins' roles in animal models before potentially pursuing clinical trials in humans.

add to favorites email to friend print save as pdf

Related Stories

Researchers find key to blood-clotting process

Jun 26, 2013

Researchers, including Professor Alastair Poole and Dr Matthew Harper from the University of Bristol's School of Physiology and Pharmacology, have uncovered a key process in understanding how blood clots ...

Blood cell breakthrough could help treat heart disease

Apr 27, 2012

(Phys.org) -- Scientists at the University of Reading have made a groundbreaking discovery into the way blood clots are formed, potentially leading to the development of new drugs to treat one of the world's ...

Recommended for you

3-D printing offers innovative method to deliver medication

4 hours ago

3-D printing could become a powerful tool in customizing interventional radiology treatments to individual patient needs, with clinicians having the ability to construct devices to a specific size and shape. That's according ...

Mystery of the reverse-wired eyeball solved

Feb 27, 2015

From a practical standpoint, the wiring of the human eye - a product of our evolutionary baggage - doesn't make a lot of sense. In vertebrates, photoreceptors are located behind the neurons in the back of the eye - resulting ...

Neurons controlling appetite made from skin cells

Feb 27, 2015

Researchers have for the first time successfully converted adult human skin cells into neurons of the type that regulate appetite, providing a patient-specific model for studying the neurophysiology of weight ...

Quality control for adult stem cell treatment

Feb 27, 2015

A team of European researchers has devised a strategy to ensure that adult epidermal stem cells are safe before they are used as treatments for patients. The approach involves a clonal strategy where stem cells are collected ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.