Boning up: Researchers find home of best stem cells for bone marrow transplants

McMaster University researchers have revealed the location of human blood stem cells that may improve bone marrow transplants. The best stem cells are at the ends of the bone.

It is hoped this discovery will lead to lowering the amount of bone marrow needed for a donation while increasing regeneration and lessening rejection in the recipient patients, says principal investigator Mick Bhatia, professor and scientific director of the McMaster Stem Cell and Cancer Research Institute.

In a paper published online today by the journal Cell Stem Cell, his team reports that human (HSC) residing in the end (trabecular region) of the bones display the highest regenerative ability of the blood and immune system.

"Like the best professional hockey players, our findings indicate blood stem cells are not all equal," said Bhatia. "We now reveal the reason why—it's not the players themselves, but the effect the arena has on them that makes them the highest scorers."

Bone marrow transplants have been done for more than 50 years and are routine in most hospitals, providing a life saving treatment for cancer and other diseases including leukemia, anemia, and .

Bhatia, who also holds a Canada Research Chair in Human Stem Cell Biology, said that cells surrounding the best blood stem cells are critically important, as these "stem cell neighbors" at the end of the bone provide the unique instructions that give these stem cells their superior regenerative abilities.

add to favorites email to friend print save as pdf

Related Stories

Cross-country collaboration leads to new leukemia model

Jul 31, 2013

Eight years ago, two former Stanford University postdoctoral fellows, one of them still in California and the other at the Harvard Stem Cell Institute (HSCI) in Cambridge, began exchanging theories about why patients with ...

Recommended for you

Human brain has coping mechanism for dehydration

4 hours ago

(HealthDay)—Although dehydration significantly reduces blood flow to the brain, researchers in England have found that the brain compensates by increasing the amount of oxygen it extracts from the blood. ...

User comments