Cross-country collaboration leads to new leukemia model

July 31, 2013

Eight years ago, two former Stanford University postdoctoral fellows, one of them still in California and the other at the Harvard Stem Cell Institute (HSCI) in Cambridge, began exchanging theories about why patients with leukemia stop producing healthy blood cells. What was it, they asked, that caused bone marrow to stop producing normal blood-producing cells?

And after almost a decade of bicoastal collaboration, Emmanuelle Passegué, now a professor in the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at the University of California, San Francisco, and Amy Wagers, a professor in Harvard's Department of Stem Cell and Regenerative Biology, have the answer.

They have found that cancer stem actively remodel the environment of the bone marrow, where blood cells are formed, so that it is hospitable only to . This finding could influence the effectiveness of , currently the only cure for late-stage leukemia, but with a 25 percent success rate due to repopulation of residual cancer cells.

Their results, which were recently published online in Cell Stem Cell, show that cannot replicate in the bone marrow niche as well as healthy blood-forming stem cells can, so the cancer cells gain the advantage by triggering bone marrow-maintenance cells to deposit collagen and , leading to fibrosis—or scarring—of the bone marrow cavity.

"They remodel the microenvironment so that it is basically callous, kicking the normal stem cells out of the bone marrow and encouraging the production of even more ," Passegué said. This model is a shift from the widely held theory that cancer cells simply crowd out the healthy cells.

Passegué and Wagers stayed in touch, despite the distance between their laboratories, via annual, two-day, "off-the-record" symposiums of junior investigators at the Harvard Stem Cell Institute and the California Institute for Regenerative Medicine (CIRM). The meetings, which began in 2005 and have continued, require all registrants to keep presentations no longer than 15 minutes and only to discuss unpublished work. "It's sort of Las Vegas rules," Wagers said.

At the second such meeting, Passegué was intrigued by Wagers' cell isolation-based approach to studying the bone marrow niche, the environment where are found. In the ensuing years, the two scientists swapped protocols, chemical reagents, mice, and even postdoctoral researchers in the pursuit of discovering what causes healthy blood cell dysfunction in leukemia. "Wagers was really involved as a creative spirit in the development of this story," Passegué said.

The observation that leukemia cells can remodel the bone marrow niche parallels work done by HSCI co-director David Scadden of the Harvard-affiliated Massachusetts General Hospital, who demonstrated that particular genetic modifications of bone-forming cells initiate changes in the marrow cavity that suppress normal blood formation and promote the emergence of leukemic cells. "So there's this bidirectional communication that's self-reinforcing, "Wagers said. "And if there's a communication loop like that, you can think about interrupting in many different ways."

Passegué wants to understand how bone-marrow support cells are manipulated to sustain leukemia cells, instead of normal , in order to design therapies that block these detrimental changes. In the short term, her work could explain why 75 percent of bone marrow transplants are unsuccessful. "A poor niche is likely a very important contributing factor for failure to engraft," she said. Her lab has shown that fibrotic bone marrow conditions can be reversed in as little as a few months by removing the bad-acting maintenance cells, and she is now investigating how to restore the healthy environment in leukemia patients.

Passegué and Wagers believe the success of this research reflects the value of scientific partnerships. "Both HSCI and CIRM understand the importance of fostering the open communication and collaboration that drives innovation in science," Wagers said. The 2013 HSCI/California Junior Faculty Symposium will take place Nov. 8 and 9 at the University of California, Los Angeles.

Explore further: New findings may help overcome hurdle to successful bone marrow transplantation

Related Stories

New findings may help overcome hurdle to successful bone marrow transplantation

May 28, 2013
Blood diseases such as leukemia, multiple myeloma, and myelodysplasia can develop from abnormal bone marrow cells and a dysfunctional bone marrow microenvironment that surrounds these cells. Until now, researchers have been ...

Could sleeping stem cells hold key to treatment of aggressive blood cancer?

July 29, 2013
Scientists studying an aggressive form of leukaemia have discovered that rather than displacing healthy stem cells in the bone marrow as previously believed, the cancer is putting them to sleep to prevent them forming new ...

Fat in organs and blood may increase risk of osteoporosis

July 16, 2013
Excess fat around the belly has recently been identified as a risk factor for bone loss. Now, a new study has determined that excess liver and muscle fat also may be detrimental to bone.

Stem cell survival strategy key to blood and immune system health

February 14, 2013
Stem cells of the aging bone marrow recycle their own molecules to survive and keep replenishing the blood and immune systems as the body ages, researchers at UC San Francisco (UCSF) have discovered.

DNA-altering enzyme is essential for blood cell development

June 10, 2013
The expression of specific genes is partially dictated by the way the DNA is packed into chromatin, a tightly packed combination of DNA and proteins known as histones. HDAC3 is a chromatin-modifying enzyme that regulates ...

Distinct niches in bone marrow nurture blood stem cells

February 24, 2013
In research that could one day improve the success of stem cell transplants and chemotherapy, scientists have found that distinct niches exist in bone marrow to nurture different types of blood stem cells.

Recommended for you

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.