Building better brain implants: The challenge of longevity

August 20, 2013
In this experiment, we describe a method for environmentally-controlled microtensile testing of mechanically-adaptive polymer nanocomposites for ex-vivo characterization. Credit: The Journal of Visualized Experiments

On August 20, JoVE, the Journal of Visualized Experiments will publish a technique from the Capadona Lab at Case Western Reserve University to accommodate two challenges inherent in brain-implantation technology, gauging the property changes that occur during implantation and measuring on a micro-scale. These new techniques open the doors for solving a great challenge for bioengineers—crafting a device that can withstand the physiological conditions in the brain for the long-term.

"We created an instrument to measure the mechanical properties of micro-scale , after being explanted from living animals," explained the lab's principal investigator, Dr. Jeffrey R. Capadona. By preserving the changing properties that occurred during implantation even after removal, the technique offers potential to create and test new materials for devices. It could result in producing longer lasting and better suited devices for the highly-tailored functions.

For implanted devices, withstanding the high-temperatures, moisture, and other in-vivo properties poses a challenge to longevity. Resulting changes in stiffness, etc, of an implanted material can trigger a greater inflammatory response. "Often, the body's reaction to those implants causes the device to prematurely fail," says Dr. Capadona, "In some cases, the patient requires regular to replace or revise the implants."

New implantation materials may help find solutions to restore motor function in individuals who have suffered from , stroke or multiple sclerosis. "Microelectrodes embedded chronically in the brain could hold promise for using to restore motor function in individuals who have, suffered from spinal cord injuries," said Dr. Capadona.

The video will load shortly
In this experiment, we describe the method for the environmentally-controlled microtensile testing of mechanically-adaptive polymer nanocomposites for ex-vivo characterization. Credit: The Journal of Visualized Experiments.

Furthermore, Capadona and his colleagues' method allows for measurement of mechanical properties using microsize scales. Previous methods typically require large or nano-sized samples of material, and data has to be scaled, which doesn't always work.

When asked why Dr. Capadona and his colleagues published their methods with JoVE, he responded "We choose JoVE because of the novel format to show readers visually what we are doing. If a picture is worth [a] thousand words, a video is worth a million."

Explore further: New invasive imaging technique to monitor brain function

Related Stories

New invasive imaging technique to monitor brain function

June 26, 2012

A new video article in JoVE, the Journal of Visualized Experiments, describes a novel procedure to monitor brain function and aid in functional mapping of patients with diseases such as epilepsy. This procedure illustrates ...

Songbirds may give insight to nature vs. nuture

June 3, 2013

On June 3rd, JoVE will publish a research technique that allows neural imaging of auditory stimuli in songbirds via MRI. The technique, developed by Dr. Annemie Van der Linden and her laboratory at the University of Antwerp ...

Brain probe that softens after insertion causes less scarring

November 3, 2011

A hard probe inserted in the cerebral cortex of a rat model turns nearly as pliable as the surrounding gray matter in minutes, and induces less of the tough scarring that walls off hard probes that do not change, researchers ...

Recommended for you

Rac1 protein critical for lung development

October 20, 2016

A study by researchers from The Saban Research Institute of Children's Hospital Los Angeles reveals a promising therapeutic target for improving lung function in infants. Their study, now published online by the American ...

A vitamin could help treat Duchenne muscular dystrophy

October 19, 2016

Duchenne is the most common and severe form of muscular dystrophy. Because of this genetic disease, one out of every 3,500 children spends their 12th birthday in a wheelchair. This disorder progressively leads to general ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.