Study reveals potential role of 'love hormone' oxytocin in brain function

August 4, 2013

In a loud, crowded restaurant, having the ability to focus on the people and conversation at your own table is critical. Nerve cells in the brain face similar challenges in separating wanted messages from background chatter. A key element in this process appears to be oxytocin, typically known as the "love hormone" for its role in promoting social and parental bonding.

In a study appearing online August 4 in Nature, NYU Langone Medical Center researchers decipher how , acting as a neurohormone in the brain, not only reduces background noise, but more importantly, increases the strength of desired signals. These findings may be relevant to autism, which affects one in 88 children in the United States.

"Oxytocin has a remarkable effect on the passage of information through the brain," says Richard W. Tsien, DPhil, the Druckenmiller Professor of Neuroscience and director of the Neuroscience Institute at NYU Langone Medical Center. "It not only quiets background activity, but also increases the accuracy of stimulated impulse firing. Our experiments show how the activity of can be sharpened, and hint at how this re-tuning of brain circuits might go awry in conditions like autism."

Children and adults with (ASD) struggle with recognizing the emotions of others and are easily distracted by extraneous features of their environment. Previous studies have shown that children with autism have lower levels of oxytocin, and mutations in the gene predispose people to autism. Recent brain recordings from people with ASD show impairments in the transmission of even simple .

The current study built upon 30-year old results from researchers in Geneva, who showed that oxytocin acted in the hippocampus, a region of the brain involved in memory and cognition. The hormone stimulated – called inhibitory – to release a chemical called GABA. This substance dampens the activity of the adjoining excitatory nerve cells, known as pyramidal cells.

"From the previous findings, we predicted that oxytocin would dampen brain circuits in all ways, quieting both background noise and wanted signals," Dr. Tsien explains. "Instead, we found that oxytocin increased the reliability of stimulated impulses – good for brain function, but quite unexpected."

To resolve this paradox, Dr. Tsien and his Stanford graduate student Scott Owen collaborated with Gord Fishell, PhD, the Julius Raynes Professor of Neuroscience and Physiology at NYU Langone Medical Center, and NYU graduate student Sebnem Tuncdemir. They identified the particular type of inhibitory interneurons responsible for the effects of oxytocin: "fast-spiking" inhibitory interneurons.

The mystery of how oxytocin drives these fast-spiking inhibitory cells to fire, yet also increases signaling to pyramidal neurons, was solved through studies with rodent models. The researchers found that continually activating the fast-spiking inhibitory neurons – good for lowering background noise – also causes their GABA-releasing synapses to fatigue. Accordingly, when a stimulus arrives, the tired synapses release less GABA and excitation of the pyramidal neuron is not dampened as much, so that excitation drives the pyramidal neuron's firing more reliably.

"The stronger signal and muffled background noise arise from the same fundamental action of oxytocin and give two benefits for the price of one," Dr. Fishell explains. "It's too early to say how the lack of oxytocin signaling is involved in the wide diversity of autism-spectrum disorders, and the jury is still out about its possible therapeutic effects. But it is encouraging to find that a naturally occurring neurohormone can enhance brain circuits by dialing up wanted signals while quieting background noise."

Explore further: No oxytocin benefit for autism

More information: Oxytocin enhances hippocampal spike transmission by modulating fast-spiking interneurons, DOI: 10.1038/nature12330

Related Stories

No oxytocin benefit for autism

July 18, 2013

The so-called trust hormone, oxytocin, may not improve the symptoms of children with autism, a large study led by UNSW researchers has found.

Oxytocin improves brain function in children with autism

May 21, 2012

(Medical Xpress) -- Preliminary results from an ongoing, large-scale study by Yale School of Medicine researchers shows that oxytocin — a naturally occurring substance produced in the brain and throughout the body— ...

Could nasal spray of 'love hormone' treat autism?

May 16, 2012

(HealthDay) -- Children with autism given a squirt of a nasal spray containing the hormone oxytocin showed more activity in brain regions known to be involved with processing social information, a small study found.

Recommended for you

Rat brain atlas provides MR images for stereotaxic surgery

October 21, 2016

Boris Odintsov, senior research scientist at the Biomedical Imaging Center at the Beckman Institute for Advanced Science and Technology at the University of Illinois in Urbana-Champaign, and Thomas Brozoski, research professor ...

ALS study reveals role of RNA-binding proteins

October 20, 2016

Although only 10 percent of amyotrophic lateral sclerosis (ALS) cases are hereditary, a significant number of them are caused by mutations that affect proteins that bind RNA, a type of genetic material. University of California ...

Imaging technique maps serotonin activity in living brains

October 20, 2016

Serotonin is a neurotransmitter that's partly responsible for feelings of happiness and for mood regulation in humans. This makes it a common target for antidepressants, which block serotonin from being reabsorbed by neurons ...

Overcoming egocentricity increases self-control

October 19, 2016

Neurobiological models of self-control usually focus on brain mechanisms involved in impulse control and emotion regulation. Recent research at the University of Zurich shows that the mechanism for overcoming egocentricity ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.