Team learns how sleeping sickness parasite defeats immune system

August 22, 2013 by Bob Yirka report
False-coloured scanning electron microscope images of trypanosomes growing in hepatic vessels of mice after 5 days of infection. Credit: Gilles Vanwalleghem, Daniel Monteyne and David Pérez-Morga, CMMI, Laboratory of Molecular Parasitology, Université Libre de Bruxelles, Belgium

(Medical Xpress)—A team of researchers with members from across Europe has discovered the mechanism by which the sleeping sickness parasite overcomes the immune system in humans. In their paper published in the journal Nature, the team describes the three step process that the parasite uses to defeat an immune system response. They also report that they have developed a mutant type of protein that disrupts the parasitic process allowing the immune system to destroy the invader.

Sleeping sickness is caused by a parasite which is usually transmitted by the fly—7,197 new cases were reported in 2012 alone. It's constrained mainly to Africa and no known vaccine exists to prevent it. In many cases, people who are infected live with it for many years, eventually succumbing to its debilitating effects (headaches, fever, itching, joint pain and eventually swollen lymph nodes and other as well as ). The parasite gains entry to the body when a victim is bitten then travels to other parts of the body via the bloodstream. Modern treatments for the disease have reduced deaths dramatically, but the hope is that a vaccine can be created that will prevent the misery it inflicts.

The researchers have been studying the gambiense strain of the parasite which is responsible for the majority (97 percent) of human deaths. In so doing they have learned that the parasites use a three step process to outwit the .

False-coloured scanning electron microscope images of trypanosomes laying on the peritoneum ephitelium during the first day of infection. Credit: Gilles Vanwalleghem, Daniel Monteyne and David Pérez-Morga, CMMI, Laboratory of Molecular Parasitology, Université Libre de Bruxelles, Belgium

In the first stage, the parasite creates a protein to stiffen its membranes, making it difficult for the apoL1 to enter the parasite body and kill it. The second stage involves building up its inner defenses to make it even more difficult for apol1 to make its way inside. The third stage involves actually digesting the apoL1 protein if it does make its way inside the parasite, preventing its absorption which would kill it.

Because the team was able to identify the process by which the parasite foils the immune system, they were able to develop a mutant strain of the apoL1 protein which was not fooled by the tactics of the parasite and was therefore able to kill it. A lot more research will have to be conducted on the mutant strain of course, to make sure it doesn't behave in unexpected ways, before human trials can begin.

Explore further: Parasite sheds light on sleeping sickness

More information: Mechanism of Trypanosoma brucei gambiense resistance to human serum, Nature (2013) DOI: 10.1038/nature12516

Abstract
The African parasite Trypanosoma brucei gambiense accounts for 97% of human sleeping sickness cases. T. b. gambiense resists the specific human innate immunity acting against several other tsetse-fly-transmitted trypanosome species such as T. b. brucei, the causative agent of nagana disease in cattle. Human immunity to some African trypanosomes is due to two serum complexes designated trypanolytic factors (TLF-1 and -2), which both contain haptoglobin-related protein (HPR) and apolipoprotein LI (APOL1)2, 3, 4. Whereas HPR association with haemoglobin (Hb) allows TLF-1 binding and uptake via the trypanosome receptor TbHpHbR, TLF-2 enters trypanosomes independently of TbHpHbR. APOL1 kills trypanosomes after insertion into endosomal/lysosomal membranes. Here we report that T. b. gambiense resists TLFs via a hydrophobic ?-sheet of the T. b. gambiense-specific glycoprotein (TgsGP)8, which prevents APOL1 toxicity and induces stiffening of membranes upon interaction with lipids. Two additional features contribute to resistance to TLFs: reduction of sensitivity to APOL1 requiring cysteine protease activity, and TbHpHbR inactivation due to a L210S substitution. According to such a multifactorial defence mechanism, transgenic expression of T. b. brucei TbHpHbR in T. b. gambiense did not cause parasite lysis in normal human serum. However, these transgenic parasites were killed in hypohaptoglobinaemic serum, after high TLF-1 uptake in the absence of haptoglobin (Hp) that competes for Hb and receptor binding. TbHpHbR inactivation preventing high APOL1 loading in hypohaptoglobinaemic serum may have evolved because of the overlapping endemic area of T. b. gambiense infection and malaria, the main cause of haemolysis-induced hypohaptoglobinaemia in western and central Africa.

Related Stories

Unveiling malaria's 'invisibility cloak'

January 18, 2012

The discovery by researchers from the Walter and Eliza Hall Institute of a molecule that is key to malaria's 'invisibility cloak' will help to better understand how the parasite causes disease and escapes from the defenses ...

Malaria's severity reset by mosquito

May 30, 2013

(Medical Xpress)—For the first time, researchers have proven that the way in which malaria is transmitted to the host affects how severe the resulting infection will be.

Australian researchers close in on malaria vaccine

July 2, 2013

Australian researchers said Tuesday they were closing in on a potential vaccine against malaria, with a study showing their treatment had protected mice against several strains of the disease.

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.