Researchers discover how the deadly malaria parasite evades the immune system, make progress toward developing a cure

December 3, 2012, Hebrew University of Jerusalem
Researchers discover how the deadly malaria parasite evades the immune system, progress toward developing a cure
Anopheles mosquito, carrier of the deadly Plasmodium parasite that causes malaria. Credit: Centers for Disease Control and Prevention

(Medical Xpress)—More than a million people die each year of malaria caused by different strains of the Plasmodium parasite transmitted by the Anopheles mosquito. The medical world has yet to find an effective vaccine against the deadly parasite, which mainly affects pregnant women and children under the age of five. By figuring out how the most dangerous strain evades the watchful eye of the immune system, researchers from the Hebrew University of Jerusalem have now paved the way for the development of new approaches to cure this acute infection.

Upon entering the bloodstream, the Plasmodium parasite reproduces in the and transports its proteins to their surface. These cells become sticky and cling to the walls of blood vessels, blocking them and damaging the human body. The immune system typically identifies these proteins as foreign and creates antibodies to fight the disease.

The deadliest of the five Plasmodium strains is Plasmodium falciparum, which causes more than 90% of deaths associated with malaria. This sophisticated strain deceives the immune system by revealing only one protein encoded by one of the sixty genes at its disposal. While the immune system is busy fighting that protein, the parasite switches to another protein not recognized by the immune system, thus avoiding the antibody response and re-establishing infection.

In research conducted at the Department of Microbiology and at the Institute for Medical Research Israel-Canada, and the Kuvin Center for the Study of Infectious and Tropical Diseases at the Hebrew University-Hadassah Medical School, Dr. Ron Dzikowski and research student Inbar Avraham revealed for the first time the that enables a parasite to selectively express one protein while hiding other proteins from the immune system.

By combining bioinformatic and , the researchers identified a unique DNA sequence found in the regulatory regions of the gene family that encode for these surface proteins. They showed that the parasite's ability to express only one gene while hiding the other 59 depends on this sequence. The research suggests that by interfering with the regulatory role of this DNA sequence it would be possible to prevent Plasmodium falciparum from hiding most of its destructive genes from the immune system.

According to Dr. Dzikowski, ''These results are a major breakthrough in understanding the parasite's ability to cause damage. This understanding could lead to strategies for disrupting this ability and giving the immune system an opportunity to clear the infection and overcome the disease. This clever parasite knows how to switch masks to evade an immune attack, but our discovery could lead to new ways to prevent it from continuing this dangerous game.''

The research was published this week in the Proceedings of the National Academy of Sciences.

Explore further: Improving human immunity to malaria

Related Stories

Improving human immunity to malaria

August 1, 2012
The deadliest form of malaria is caused the protozoan Plasmodium falciparum. During its life-cycle in human blood, the parasite P. falciparum expresses unique proteins on the surface on infected blood cells.

'Protein microarrays' may reveal new weapons against malaria

November 1, 2011
A new research technology is revealing how humans develop immunity to malaria, and could assist programs aimed at eradicating this parasitic disease.

Malaria parasites use camouflage to trick immune defences of pregnant women

July 11, 2011
Copenhagen University Hospital and the University of Copenhagen have discovered why malaria parasites are able to hide from the immune defences of expectant mothers, allowing the parasite to attack the placenta. The discovery ...

Recommended for you

Anemia discovery offers new targets to treat fatigue in millions

January 22, 2018
A new discovery from the University of Virginia School of Medicine has revealed an unknown clockwork mechanism within the body that controls the creation of oxygen-carrying red blood cells. The finding sheds light on iron-restricted ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.