Stem cells linked to cognitive gain after brain injury in preclinical study

November 4, 2013

A stem cell therapy previously shown to reduce inflammation in the critical time window after traumatic brain injury also promotes lasting cognitive improvement, according to preclinical research led by Charles Cox, M.D., at The University of Texas Health Science Center at Houston (UTHealth) Medical School.

The research was published in today's issue of Stem Cells Translational Medicine.

Cellular damage in the brain after traumatic injury can cause severe, ongoing neurological impairment and inflammation. Few pharmaceutical options exist to treat the problem. About half of patients with severe head injuries need surgery to remove or repair ruptured blood vessels or bruised .

A stem cell treatment known as multipotent adult progenitor cell (MAPC) therapy has been found to reduce inflammation in immediately after traumatic brain injury, but no one had been able to gauge its usefulness over time.

The research team led by Cox, the Children's Fund, Inc. Distinguished Professor of Pediatric Surgery at the UTHealth Medical School, injected two groups of brain-injured mice with MAPCs two hours after the mice were injured and again 24 hours later. One group received a dose of 2 million cells per kilogram and the other a dose five times stronger.

After four months, the mice receiving the stronger dose not only continued to have less inflammation—they also made significant gains in cognitive function. A laboratory examination of the rodents' brains confirmed that those receiving the higher dose of MAPCs had better brain function than those receiving the lower dose.

"Based on our data, we saw improved spatial learning, improved motor deficits and fewer active antibodies in the mice that were given the stronger concentration of MAPCs," Cox said.

The study indicates that intravenous injection of MAPCs may in the future become a viable treatment for people with traumatic , he said.

Cox, who directs the Pediatric Surgical Translational Laboratories and Pediatric Program in Regenerative Medicine at UTHealth, is a leader in the field of autologous and blood cord for in children and adults. Results from a Phase I study were published in a March 2011 issue of Neurosurgery, the journal of the Congress of Neurological Surgeons. Cox also directs the Pediatric Trauma Program at Children's Memorial Hermann Hospital.

Explore further: UTHealth studies cord blood stem cells for pediatric traumatic brain injury

Related Stories

Stem cells may provide treatment for brain injuries

March 10, 2011

Stem cells derived from a patient's own bone marrow were safely used in pediatric patients with traumatic brain injury (TBI), according to results of a Phase I clinical trial at The University of Texas Health Science Center ...

Can traumatic brain injury impair a child's working memory?

September 26, 2013

Traumatic brain injury (TBI) during childhood can have long-term effects on cognitive and psychosocial functioning, including poor academic achievement. Pediatric TBI can cause significant deficits in working memory, as demonstrated ...

Stem cell scarring aids recovery from spinal cord injury

October 31, 2013

In a new study, researchers at Karolinska Institutet in Sweden show that the scar tissue formed by stem cells after a spinal cord injury does not impair recovery; in fact, stem cell scarring confines the damage. The findings, ...

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.