Biologists find clues to a parasite's inconsistency

by Anne Trafton
Toxoplasma gondii. Credit: Wikipedia

Toxoplasma gondii, a parasite related to the one that causes malaria, infects about 30 percent of the world's population. Most of those people don't even know they are infected, but a small percentage develop encephalitis or ocular toxoplasmosis, which can lead to blindness.

MIT biologist Jeroen Saeij and his colleagues are trying to figure out why some forms of the disease are so innocuous, while others ravage their victims. In their latest paper, they analyzed 29 strains of the parasite and found that some of those endemic to South America or atypical in North America provoke very strong inflammation in the cells they infect, which can severely damage tissue.

"You have a lot of strains that are silent, and then you have these exotic strains that can cause very severe disease," says Saeij, the Robert A. Swanson Career Development Associate Professor of Life Sciences. "The goal of the project was to see how different are these South American strains compared to strains that are really prevalent in North America and Europe."

Toxoplasma spores are found in dirt and easily infect farm animals such as cows, sheep, pigs, and chickens. Humans can be infected by eating undercooked meat or unwashed vegetables. Infection rates vary around the world: In the United States, it's about 10 to 15 percent, while rates in Europe and Brazil are much higher, around 50 to 80 percent.

The strains that circulate most commonly in North America and Europe usually cause problems only in people with suppressed immune systems, such as AIDS patients or transplant recipients, although some atypical North American and European strains have been associated with severe ocular toxoplasmosis. It can also be dangerous for a woman to become infected while pregnant, as the parasite can cause birth defects.

In South America, there is a much higher incidence of severe symptoms in otherwise healthy people. Scientists are still unsure what makes some South American strains so virulent, in part because most studies have focused on the North American and European varieties.

Hyperinflammatory response

In the new study, which appears this week in the journal PLOS Pathogens, Saeij and colleagues infected mouse immune cells known as macrophages with each of the 29 strains they had collected, representing global diversity. Macrophages are one of the parasite's major targets and also a critical part of the host's .

After infecting the cells, the researchers sequenced all of the messenger RNA molecules in the host cells. This reveals which genes—both parasite and host—are most active during infection.

Most strikingly, some South American and some atypical North American strains induced a type of immune reaction usually only seen during viral infection, known as the type 1 interferon response. This generates very strong inflammation in the host cells, which the researchers suspect may be causing the severe effects produced by those strains.

Paradoxically, the parasite only sets off this immune response after the has killed it, spilling the parasite's DNA and RNA into the cell.

"It's often not the parasite that causes all the damage, but it's actually the host immune response that's causing most of the damage," Saeij says. "We think that maybe what's happening is these come in and they trigger a hyperinflammatory host immune response that might cause damage to the eyes."

Toxoplasma is one of the few parasites that can infect any warm-blooded animal, says Mariane Melo, an MIT postdoc and the paper's lead author. "For an organism to be able to infect any host and any cell, it needs to be able to have a very big arsenal of molecules that can function in the different hosts and the different cells," Melo says. "However, we believe that different strains may have evolved to be able to maintain and reproduce optimally in a specific niche in nature, which may explain why different strains of Toxoplasma have such varying effects in different organisms."

She notes that a strain adapted to long-term survival in rats may cause a fatal infection in mice, or vice versa, because it might modulate host immune responses too much or not enough in hosts it is not optimally adapted to.

The MIT researchers are now investigating why host cells kill certain South American strains so much more effectively, and why that killing provokes the interferon response. They have put their data, which includes gene expression profiles for all 29 strains, into a publicly available database for other researchers to use and add to. "There's a lot of data, and we still understand very little of it," Saeij says. "We hope that other people will now start studying more of these South American ."

Related Stories

Biologists shed light on a puzzling parasite

Jun 20, 2011

Toxoplasma gondii, a parasite that infects about one-third of the world’s population, comes in several strains. Some can have severe consequences such as encephalitis, while others produce no noticeable ...

On the trail of a stealthy parasite

Jan 04, 2011

About one-third of the human population is infected with a parasite called Toxoplasma gondii, but most of them don’t know it.

How Toxoplasma gondii gets noticed

Jan 19, 2009

Researchers provide insight into how Toxoplasma gondii, a common parasite of people and other animals, triggers an immune response in its host. The report will appear online on January 19th in The Journal of Experimental Medicine. ...

Recommended for you

US looking past Ebola to prepare for next outbreak

1 hour ago

The next Ebola or the next SARS. Maybe even the next HIV. Even before the Ebola epidemic in West Africa is brought under control, U.S. public health officials are girding for the next health disaster.

Can robots help stop the Ebola outbreak?

10 hours ago

The US military has enlisted a new germ-killing weapon in the fight against Ebola—a four-wheeled robot that can disinfect a room in minutes with pulses of ultraviolet light.

New bird flu case in Germany

10 hours ago

A worrying new strain of bird flu has been observed for the first time in a wild bird in northern Germany, the agriculture ministry said Saturday.

Mali announces new Ebola case

Nov 22, 2014

Mali announced Saturday a new case of Ebola in a man who is fighting for his life in an intensive care unit in the capital Bamako.

Plague outbreak kills 40 in Madagascar: WHO

Nov 22, 2014

An outbreak of plague has killed 40 people in Madagascar, the World Health Organization said, warning that the disease could spread rapidly in the country's densely populated capital Antananarivo.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.