MRSA strain gained dominance with help from skin bacteria

December 17, 2013

Scientists believe they have an explanation for how the most common strain of methicillin-resistant Staphylococcus aureus (MRSA) rapidly rose to prominence. Research published in mBio, the online open-access journal of the American Society for Microbiology, suggests that the strain recently acquired a number of genes from common skin bacteria that allow it to grow and thrive on the skin where other strains of MRSA cannot.

"Over the past 15 years, methicillin-resistant Staphylococcus aureus has become a major public health problem. It is likely that adaptations in specific MRSA lineages drove the spread of MRSA across the United States and allowed it to replace other, less-virulent S. aureus ," says Paul Planet of Columbia University, the lead author on the study.

Since it was first identified in the late 1990s the USA300 strain of MRSA has undergone an extremely rapid expansion across the United States. It is now the predominant cause of community-acquired MRSA and soft tissue infections and has been implicated in MRSA outbreaks among professional football teams. The strain is genetically distinguished from other strains by a cluster of genes known as the arginine catabolic mobile element (ACME.)

"Using phylogenetic analysis, we showed that the modular segments of ACME were assembled into a single genetic locus in Staphylococcus epidermidis (a relatively harmless bacterium typically found on human skin) and then horizontally transferred to the common ancestor of USA300 strains in an extremely recent event that coincided with the emergence and spread of this strain" says Planet.

The researchers identified one ACME gene in particular, called speG, that conferred on USA300 strains the ability to withstand high levels of polyamines, compounds produced by the skin that are toxic to other strains of MRSA. Polyamine tolerance also gave MRSA multiple advantages including enhanced biofilm formation, adherence to host tissues and resistance to certain antibiotics, according to the study.

"We suggest that these properties gave USA 300 a major selective advantage during skin infection and colonization, contributing to the extraordinary evolutionary success of this clone," says Planet.

Explore further: Strains of antibiotic-resistant 'Staph' bacteria show seasonal preference: Children at higher risk in summer

Related Stories

Copious community-associated MRSA in nursing homes

October 24, 2013

More than one quarter of residents of 26 nursing homes in Orange County, California carry community-associated methicillin-resistant Staphylococcus aureus (MRSA), which spread more easily, and may cause more severe infection ...

MRSA declines are sustained in veterans hospitals nationwide

October 29, 2013

Five years after implementing a national initiative to reduce methicillin-resistant Staphylococcus aureus (MRSA) rates in Veterans Affairs (VA) medical centers, MRSA cases have continued to decline, according to a study in ...

Recommended for you

Monkeys in Asia harbor virus from humans, other species

November 19, 2015

When it comes to spreading viruses, bats are thought to be among the worst. Now a new study of nearly 900 nonhuman primates in Bangladesh and Cambodia shows that macaques harbor more diverse astroviruses, which can cause ...

One-step test for hepatitis C virus infection developed

November 14, 2015

UC Irvine Health researchers have developed a cost-effective one-step test that screens, detects and confirms hepatitis C virus (HCV) infections. Dr. Ke-Qin Hu, director of hepatology services, will present findings at the ...

Computer model reveals deadly route of Ebola outbreak

November 10, 2015

Using a novel statistical model, a research team led by Columbia University's Mailman School of Public Health mapped the spread of the 2014-2015 Ebola outbreak in Sierra Leone, providing the most detailed picture to date ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.