New computational model reveals novel possibilities for H. pylori treatment

by John David Pastor
New computational model reveals novel possibilities for H. pylori treatment
Adria Carbo reviews computer models for the H. pylori experiment

A new computational model developed by researchers at the Center for Modeling Immunity to Enteric Pathogens at Virginia Tech's Virginia Bioinformatics Institute offers new ways to study host immune responses to the gastric ulcer-causing bacterium Helicobacter pylori.

Using the model, researchers identified an abnormal linked to development of lesions during H. pylori of the stomach. Their findings may help clinicians pinpoint how best to treat such infections.

"This large-scale of host responses to H. pylori infection combines cutting-edge approaches in computational modeling and experimental research to help elucidate immune responses to H. pylori," said Raquel Hontecillas, co-director of the center, which is part of Virginia Tech's Nutritional Immunology and Molecular Medicine Laboratory.

H. pylori lives in the human gut and sometimes causes ulcers and cancers. Currently, doctors treat H. pylori infections with antibiotics that destroy the bacteria. However, H. pylori also can protect against diseases such as asthma, obesity and diabetes. Understanding how a harmless bacterial population becomes virulent and leads to disease has been difficult, but the computational model developed by the center researchers has led to new insights.

Based on results from experimental work with mouse models, the team of scientists built a computational simulation that can predict how and when infection begins and progresses. The model shows the position of cells during infection and accounts for the non-uniformity and randomness of immune responses.

Using the computational model, laboratory researchers found that, although H. pylori may be responsible for starting an infection, abnormal immune responses can contribute to chronic ulcers or cancers.

"The knowledge gained from such models will accelerate the development of novel drugs and vaccines for H. pylori-associated diseases," said Hontecillas. "The ultimate aim may not be to destroy H. pylori but to learn how to manipulate the interaction of the bacterium and host immune system to produce beneficial effects."

More information: Carbo A, Bassaganya-Riera J, Pedragosa M, Viladomiu M, Marathe M, et al. (2013) Predictive Computational Modeling of the Mucosal Immune Responses during Helicobacter pylori Infection. PLoS ONE 8(9): e73365. DOI: 10.1371/journal.pone.0073365

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Travel restrictions could worsen Ebola crisis: experts

2 hours ago

Travel restrictions could worsen West Africa's Ebola epidemic, limiting medical and food supplies and keeping out much-needed doctors, virologists said Tuesday as the disease continued its deadly spread.

World 'losing battle' to contain Ebola: MSF (Update)

3 hours ago

International medical agency Medecins sans Frontieres said Tuesday the world was "losing the battle" to contain Ebola as the United Nations warned of severe food shortages in the hardest-hit countries.

Mutating Ebola viruses not as scary as evolving ones

4 hours ago

My social media accounts today are cluttered with stories about "mutating" Ebola viruses. The usually excellent ScienceAlert, for example, rather breathlessly informs us "The Ebola virus is mutating faster in humans than in animal hosts ...

War between bacteria and phages benefits humans

4 hours ago

In the battle between our immune systems and cholera bacteria, humans may have an unknown ally in bacteria-killing viruses known as phages. In a new study, researchers from Tufts University, Massachusetts ...

Ebola kills 31 people in DR Congo: WHO

6 hours ago

An outbreak of the Ebola virus in the Democratic Republic of Congo has killed 31 people and the epidemic remains contained in a remote northwestern region, UN the World Health Organization (WHO) said Tuesday.

User comments