New computational model reveals novel possibilities for H. pylori treatment

by John David Pastor
New computational model reveals novel possibilities for H. pylori treatment
Adria Carbo reviews computer models for the H. pylori experiment

A new computational model developed by researchers at the Center for Modeling Immunity to Enteric Pathogens at Virginia Tech's Virginia Bioinformatics Institute offers new ways to study host immune responses to the gastric ulcer-causing bacterium Helicobacter pylori.

Using the model, researchers identified an abnormal linked to development of lesions during H. pylori of the stomach. Their findings may help clinicians pinpoint how best to treat such infections.

"This large-scale of host responses to H. pylori infection combines cutting-edge approaches in computational modeling and experimental research to help elucidate immune responses to H. pylori," said Raquel Hontecillas, co-director of the center, which is part of Virginia Tech's Nutritional Immunology and Molecular Medicine Laboratory.

H. pylori lives in the human gut and sometimes causes ulcers and cancers. Currently, doctors treat H. pylori infections with antibiotics that destroy the bacteria. However, H. pylori also can protect against diseases such as asthma, obesity and diabetes. Understanding how a harmless bacterial population becomes virulent and leads to disease has been difficult, but the computational model developed by the center researchers has led to new insights.

Based on results from experimental work with mouse models, the team of scientists built a computational simulation that can predict how and when infection begins and progresses. The model shows the position of cells during infection and accounts for the non-uniformity and randomness of immune responses.

Using the computational model, laboratory researchers found that, although H. pylori may be responsible for starting an infection, abnormal immune responses can contribute to chronic ulcers or cancers.

"The knowledge gained from such models will accelerate the development of novel drugs and vaccines for H. pylori-associated diseases," said Hontecillas. "The ultimate aim may not be to destroy H. pylori but to learn how to manipulate the interaction of the bacterium and host immune system to produce beneficial effects."

More information: Carbo A, Bassaganya-Riera J, Pedragosa M, Viladomiu M, Marathe M, et al. (2013) Predictive Computational Modeling of the Mucosal Immune Responses during Helicobacter pylori Infection. PLoS ONE 8(9): e73365. DOI: 10.1371/journal.pone.0073365

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Sierra Leone streets deserted as shutdown begins

6 hours ago

Sierra Leone's normally chaotic capital resembled a ghost town on Friday as residents were confined to their homes for the start of a three-day lockdown aimed at halting the deadly Ebola epidemic.

Sierra Leone launches controversial Ebola shutdown

8 hours ago

Sierra Leone on Friday launched a controversial three-day shutdown to contain the deadly spread of the Ebola virus, as the UN Security Council declared the deadly outbreak a threat to world peace.

Cooling of dialysis fluids protects against brain damage

21 hours ago

While dialysis can cause blood pressure changes that damage the brain, cooling dialysis fluids can protect against such effects. The findings come from a study appearing in an upcoming issue of the Journal of the American So ...

Two Ebola vaccines to be tested in Switzerland

21 hours ago

Clinical trials of two experimental vaccines against the deadly Ebola virus are due to begin soon in Switzerland, the country's Tropical and Public Health Institute said on Thursday.

User comments