Researchers identify traffic cop mechanism for meiosis

by James Devitt

Researchers at NYU and the Whitehead Institute for Biomedical Research have identified the mechanism that plays "traffic cop" in meiosis—the process of cell division required in reproduction. Their findings, which appear in the journal eLife, shed new light on fertility and may lead to greater understanding of the factors that lead to birth defects.

"We have isolated a checkpoint that is necessary for a genome's viability and for normal development," says Andreas Hochwagen, an assistant professor in NYU's Department of Biology, who co-authored the paper with Hannah Blitzblau, a researcher at the Whitehead Institute for Biomedical Research. "Without this restraining mechanism, chromosomes can end up irreversibly broken during meiosis."

Most cells in an organism contain two sets of chromosomes, one inherited from the mother and the other from the father. However, sexual reproduction relies on the production of gametes—eggs and sperm—that contain only one set of chromosomes. These are produced through a specialized form of cell division—meiosis.

In this process, maternal and paternal versions of each chromosome pair up and swap sections of their DNA through a process known as homologous recombination—a "reshuffling" that gives rise to chromosomes with new combinations of maternal and paternal genes. This is followed by .

However, in order for normal development to occur, chromosomes must be replicated prior to their reshuffling. The disruption of this process jeopardizes reproduction and can spur a range of birth defects, notably Down syndrome.

Blitzblau and Hochwagen sought to determine what coordinates these processes to ensure they occur in proper order. Doing so would offer insights into how deviations from normal functionality could affect fertility and result in .

To do so, they examined budding yeast—a model organism in cell biology because its chromosome replication and regulation are similar to that of humans.

Through a series of manipulations, in which the researchers inhibited the activity of individual proteins, they found two enzymes that were necessary for meiosis: Mec1, which is similar to ATR, known to suppress tumors in humans, and DDK, which is a vital coordinator of chromosome reshuffling.

Specifically, they found that Mec1 senses when are being replicated and transmits a molecular "wait" signal to DDK. In this way, Mec1 acts like a traffic cop that allows chromosome replication to finish without interruption, before giving DDK the ok to begin the reshuffling.

add to favorites email to friend print save as pdf

Related Stories

Hotspots found for chromosome gene swapping

Nov 29, 2007

Crossovers and double-strand DNA breaks do not occur randomly on yeast chromosomes during meiosis, but are greatly influenced by the proximity of the chromosome’s telomere, according to research in the laboratory of Whitehead ...

How yeast chromosomes avoid the bad breaks

Aug 07, 2011

The human genome is peppered with repeated DNA elements that can vary from a few to thousands of consecutive copies of the same sequence. During meiosis—the cell division that produces sperm and eggs—repetitive ...

Clues to chromosome crossovers

Feb 13, 2013

Neil Hunter's laboratory in the UC Davis College of Biological Sciences has placed another piece in the puzzle of how sexual reproduction shuffles genes while making sure sperm and eggs get the right number ...

Recommended for you

Growing a blood vessel in a week

Oct 24, 2014

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

Oct 24, 2014

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments