Study shows autistic brains create more information at rest

January 31, 2014
autism
Quinn, an autistic boy, and the line of toys he made before falling asleep. Repeatedly stacking or lining up objects is a behavior commonly associated with autism. Credit: Wikipedia.

New research from Case Western Reserve University and University of Toronto neuroscientists finds that the brains of autistic children generate more information at rest – a 42% increase on average. The study offers a scientific explanation for the most typical characteristic of autism – withdrawal into one's own inner world. The excess production of information may explain a child's detachment from their environment.

Published at the end of December in Frontiers in Neuroinformatics, this study is a follow-up to the authors' prior finding that brain connections are different in . This paper determined that the differences account for the increased complexity within their brains.

"Our results suggest that autistic are not interested in social interactions because their brains generate more at rest, which we interpret as more introspection in line with early descriptions of the disorder," said Roberto Fernández Galán, PhD, senior author and associate professor of neurosciences at Case Western Reserve School of Medicine.

The authors quantified information as engineers normally do but instead of applying it to signals in electronic devices, they applied it to brain activity recorded with magnetoencephalography (MEG). They showed that autistic children's brains at generate more information than non-autistic children. This may explain their lack of interest in external stimuli, including interactions with other people.

The researchers also quantified interactions between brain regions, i.e., the brain's functional connectivity, and determined the inputs to the brain in the resting state allowing them to interpret the children's introspection level.

"This is a novel interpretation because it is a different attempt to understand the children's cognition by analyzing their ," said José L. Pérez Velázquez, PhD, first author and professor of neuroscience at University of Toronto Institute of Medical Science and Department of Pediatrics, Brain and Behavior Center.

"Measuring cognitive processes is not trivial; yet, our findings indicate that this can be done to some extent with well-established mathematical tools from physics and engineering."

This study provides quantitative support for the relatively new "Intense World Theory" of autism proposed by neuroscientists Henry and Kamila Markram of the Brain Mind Institute in Switzerland, which describes the disorder as the result of hyper-functioning neural circuitry, leading to a state of over-arousal. More generally, the work of Galán and Pérez Velázquez is an initial step in the investigation of how information generation in the relates to cognitive/psychological traits and will begin to frame neurophysiological data into psychological aspects. The team now aims to apply a similar approach to patients with schizophrenia.

Explore further: New research may lead to improved diagnosis of autism

Related Stories

New research may lead to improved diagnosis of autism

May 31, 2011

Functional magnetic resonance imaging (fMRI) may provide an early and objective indicator of autism, according to researchers at Columbia University in New York City, who used the technique to document language impairment ...

Do disruptions in brain communication have a role in autism?

March 21, 2013

A new study of patterns of brain communication in toddlers with autism shows evidence of aberrant neural communication even at this relatively early stage of brain development. The results are presented in an article in Brain ...

Detecting autism from brain activity

April 17, 2013

Neuroscientists from Case Western Reserve University School of Medicine and the University of Toronto have developed an efficient and reliable method of analyzing brain activity to detect autism in children. Their findings ...

Recommended for you

Neuron responsible for alcoholism found

September 2, 2015

Scientists have pinpointed a population of neurons in the brain that influences whether one drink leads to two, which could ultimately lead to a cure for alcoholism and other addictions.

Scientists see motor neurons 'walking' in real time

September 2, 2015

When you're taking a walk around the block, your body is mostly on autopilot—you don't have to consciously think about alternating which leg you step with or which muscles it takes to lift a foot and put it back down. That's ...

Neural basis of multitasking identified

September 1, 2015

What makes someone better at switching between different tasks? Looking for the mechanisms behind cognitive flexibility, researchers at the University of Pennsylvania and Germany's Central Institute of Mental Health in Mannheim ...

Deciphering the olfactory receptor code

August 31, 2015

In animals, numerous behaviors are governed by the olfactory perception of their surrounding world. Whether originating in the nose of a mammal or the antennas of an insect, perception results from the combined activation ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

loneislander
1 / 5 (1) Feb 01, 2014
This is excellent research. This seems to be the first to really abandon the "disease" model for autism and to begin to embrace an evolutionary explanation - where auspies are an essential population fluctuation for success over time. And a failure of rigour for these minds during youth (laying around, low responsibility, activities permitted to end in frustration, non-structured day, etc...) tends to account well for the disease model explanation.

He said boldly like he is one.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.