Research explores link between traumatic brain injury and sleep

January 27, 2014

(Medical Xpress)—It has long been believed that a person with a concussion should stay awake or not sleep for more than a few hours at a time.

But there appears to be no medical evidence to support that idea, according to a study regarding the relationship between traumatic brain injury, also known as TBI, and sleepiness conducted by scientists at Barrow Neurological Institute at Phoenix Children's Hospital and the University of Arizona College of Medicine – Phoenix.

"This translational research study lays the foundation for understanding the immediate impact of brain injury on a person's physiology. In this case, substantial post-traumatic sleep occurred regardless of injury timing or severity," said Jonathan Lifshitz, director of the Translational Neurotrauma Program at Barrow Neurological Institute at Phoenix Children's Hospital and an associate professor at the UA College of Medicine – Phoenix. "These studies explore sleep as an immediate response to TBI."

Traumatic brain injury is a major cause of death and disability throughout the world with little pharmacological treatment for the individuals who suffer from lifelong problems associated with TBI. Clinical studies have provided evidence to support the claim that brain injury contributes to chronic sleep disturbances as well as . Clinical observations have reported excessive sleepiness immediately following traumatic brain injury. However; there is a lack of experimental evidence to support or refute the benefit of sleep following a brain injury.

"We know that some individuals after a become excessively sleepy and some cannot sleep at all. It is not well understood why this occurs as mechanisms of injury, and locations of injury are not always consistent between clinical phenotypes of normal sleep, hypersomnia and insomnia," said Matthew Troester, a neurologist and sleep specialist at Phoenix Children's Hospital and a clinical assistant professor at the UA College of Medicine – Phoenix.

Lifshiz and his associates are breaking new ground with descriptions of sleep in the acute – or immediately after injury – state, where little is known clinically, Troester added.

"They demonstrate that the subjects slept immediately and similarly post-injury no matter the severity of the injury or time of day the injury occurred. This tells us that the brain is reacting to the injury in a very specific manner – not something we always see clinically – and, ultimately, this may help us better understand what the role of is in " such as being restorative, protective or merely a consequence of the injury, he said. "It is an exciting beginning."

Explore further: Dietary amino acids relieve sleep problems after traumatic brain injury in animals

Related Stories

Have a brain injury? You may be at higher risk for stroke

June 26, 2013

People who have a traumatic brain injury (TBI) may be more likely to have a future stroke, according to research that appears in the June 26, 2013, online issue of Neurology, the medical journal of the American Academy of ...

Recommended for you

Rat brain atlas provides MR images for stereotaxic surgery

October 21, 2016

Boris Odintsov, senior research scientist at the Biomedical Imaging Center at the Beckman Institute for Advanced Science and Technology at the University of Illinois in Urbana-Champaign, and Thomas Brozoski, research professor ...

ALS study reveals role of RNA-binding proteins

October 20, 2016

Although only 10 percent of amyotrophic lateral sclerosis (ALS) cases are hereditary, a significant number of them are caused by mutations that affect proteins that bind RNA, a type of genetic material. University of California ...

Imaging technique maps serotonin activity in living brains

October 20, 2016

Serotonin is a neurotransmitter that's partly responsible for feelings of happiness and for mood regulation in humans. This makes it a common target for antidepressants, which block serotonin from being reabsorbed by neurons ...

Overcoming egocentricity increases self-control

October 19, 2016

Neurobiological models of self-control usually focus on brain mechanisms involved in impulse control and emotion regulation. Recent research at the University of Zurich shows that the mechanism for overcoming egocentricity ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.