Epidemiologist uncovers new genes linked to abdominal fat

Kira Taylor, Ph.D., M.S. Credit: UofL

Excess abdominal fat can be a precursor to diseases such as cardiovascular disease, type 2 diabetes and cancer. A person's measure of belly fat is reflected in the ratio of waist circumference to hip circumference, and it is estimated that genetics account for about 30-60 percent of waist-to-hip ratio (WHR). Kira Taylor, Ph.D., M.S., assistant professor, University of Louisville School of Public Health and Information Sciences, and her research team have identified five new genes associated with increased WHR, potentially moving science a step closer to developing a medication to treat obesity or obesity-related diseases.

The researchers recently published their findings in Human Molecular Genetics.

The team conducted an analysis of more than 57,000 people of European descent, and searched for genes that increase risk of high waist-to-hip ratio, independent of overall obesity. They investigated over 50,000 genetic variants in 2,000 genes thought to be involved in cardiovascular or metabolic traits.

Their analysis identified three new genes associated with increased WHR in both men and women, and discovered two new genes that appear to affect WHR in women only. Of the latter, one gene, SHC1, appears to interact with 17 other proteins known to have involvement in obesity, and is highly expressed in . In addition, the genetic variant the team discovered in SHC1 is linked to another variant that causes an amino acid change in the protein, possibly changing the function or expression of the protein.

"This is the first time SHC1 has been associated with abdominal fat," Taylor said. "We believe this discovery holds great opportunity for medicinal chemistry and eventually, personalized medicine. If scientists can find a way to fine-tune the expression of this gene, we could potentially reduce the risk of excessive fat in the mid-section and its consequences, such as ."

Prior research has found that mice lacking the SHC1 protein are leaner, suggesting this molecule may have a role in metabolic imbalance and premature cell deterioration by supplying too much nutrition for normal growth and development.

Additional evidence finds SHC1 activates the insulin receptor, triggering multiple signaling events that affect fat cell growth.

add to favorites email to friend print save as pdf

Related Stories

Reducing liver protein SIRT1 levels

Jan 22, 2014

A new study led by Boston University School of Medicine (BUSM) demonstrates that the abnormal metabolism linked to obesity could be regulated in part by the interaction of two metabolic regulators, called the NAD-dependent ...

Recommended for you

Science of romantic relationships includes gene factor

Nov 23, 2014

(Medical Xpress)—Adolescents worry about passing tests, winning games, lost phones, fractured bones—and whether or not they will ever really fall in love. Three Chinese researchers have focused on that ...

Stress reaction may be in your dad's DNA, study finds

Nov 21, 2014

Stress in this generation could mean resilience in the next, a new study suggests. Male mice subjected to unpredictable stressors produced offspring that showed more flexible coping strategies when under ...

More genetic clues found in a severe food allergy

Nov 21, 2014

Scientists have identified four new genes associated with the severe food allergy eosinophilic esophagitis (EoE). Because the genes appear to have roles in other allergic diseases and in inflammation, the ...

Brain-dwelling worm in UK man's head sequenced

Nov 20, 2014

For the first time, the genome of a rarely seen tapeworm has been sequenced. The genetic information of this invasive parasite, which lived for four years in a UK resident's brain, offers new opportunities ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.