B-cells aggravate autoimmune diseases

March 4, 2014
Mice in which the scientists deactivated the PTP1B protein in B-cells have immune complex deposition (red) in their kidney. The same development could be observed in patients with rheumatoid arthritis (blue: cell nuclei). Credit: MPI f. Immunobiology and Epigenetics/ D. Medgyesi

Scientists in Freiburg may have discovered a fundamental aggravating factor in autoimmune diseases. If B-lymphocytes lack the protein PTP1B, the cells will become hyperactive for stimulatory signals and can thus promote an autoimmune attack. This study offers an additional explanation to how B-cells regulate an immune response.

In Germany, approximately 800,000 people suffer from . In this progressive disease, a person's own attacks and destroys connective tissue. However, the most important factors governing the progress of the disease are still unknown. Now, scientists working with Michael Reth and David Medgyesi from the Max Planck Institute of Immunobiology and Epigenetics have identified a factor that may play a significant role. Using genetic engineering, they deactivated the PTP1B protein in B-cells in the immune systems of mice. The B-cells then became much more responsive to activating signals and, in turn, served to reactivate the other cells.

PTP1B could therefore have a monitoring function in the B-cell-mediated . Until now, B-cells were mainly known for producing antibodies after coming into contact with pathogens. Only recently is more and more accepted by researchers that B-lymphocytes possess important regulatory function in the immune system. The current study now provides a new detail of this mechanism.

A clinical investigation showed that B-cells in patients suffering from rheumatoid arthritis also produce unusually low amounts of the studied protein. In the patients' other cell types, and in healthy subjects, this was not the case. "This suggests that the protein plays a significant role in the development or the aggravated course of rheumatoid arthritis", says principal investigator Michael Reth. Reth is head of the Molecular Immunology department at the Max Planck Institute of Immunobiology and Epigenetics, as well as scientific director of the Centre for Biological Signalling Studies (BIOSS), a German Cluster of Excellence at the University of Freiburg.

In cases of rheumatoid arthritis in which conventional treatments are ineffective, patients can be treated with the drug Rituximab. The drug destroys all B-cells in the body and will thus at least halt the progress of the disease. "The B-cells produced after the Rituximab therapy possess similar amount of the PTP1B protein as cells in healthy people. This may contribute to the less severe autoimmune reaction", explains first author David Medgyesi. Long-term studies are required to determine whether these newly produced cells will lose the over time.

By the end of the 1990s, the laboratory headed by Michael Reth had already developed mice with B-cells in which specific genes could be knocked out using Cre-lox technology. In the meantime, this mouse strain is being used very successfully in over 200 laboratories around the world to study the functioning of the immune system.

More information: Medgyesi D, Hobeika E, Biesen R, Kollert F, Taddeo A, Voll RE, Hiepe F, and Reth M. The protein tyrosine phosphatase PTP1B is a negative regulator of CD40 and BAFF-R signaling and controls B cell autoimmunity. Journal of Experimental Medicine, DOI: 10.1084/jem.20131196

Related Stories

Body's 'safety procedure' could explain autoimmune disease

September 5, 2013

Monash University researchers have found an important safety mechanism in the immune system that may malfunction in people with autoimmune diseases, such as Multiple Sclerosis, potentially paving the way for innovative treatments.

Experimental compound dramatically reduces joint inflammation

December 10, 2013

An experimental compound synthesized and developed by scientists from the Florida campus of The Scripps Research Institute (TSRI) has the capacity to significantly reduce joint inflammation in animal models of rheumatoid ...

New blood cells fight brain inflammation

February 16, 2014

Hyperactivity of our immune system can cause a state of chronic inflammation. If chronic, the inflammation will affect our body and result in disease. In the devastating disease multiple sclerosis, hyperactivity of immune ...

Recommended for you

New insight into how the immune system sounds the alarm

August 3, 2015

T cells are the guardians of our bodies: they constantly search for harmful invaders and diseased cells, ready to swarm and kill off any threats. A better understanding of these watchful sentries could allow scientists to ...

How to become a T follicular helper cell

July 30, 2015

Follicular helper Tcells (TFH cells), a rare type of immune cell that is essential for inducing a strong and lasting antibody response to viruses and other microbes, have garnered intense interest in recent years but the ...

Uncovering the secrets of immune system invaders

July 20, 2015

The human immune system is a powerful and wonderful creation. If you cut your skin, your body mobilizes a series of different proteins and cells to heal the cut. If you are infected by a virus or bacteria, your immune system ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.