Bacteria in cystic fibrosis lung infections become selfish

March 26, 2014 by Harriet Jarlett
Bacteria in cystic fibrosis lung infections become selfish

Bacteria that infect the lungs of cystic fibrosis sufferers lose their ability to work together, becoming more selfish and less cooperative the longer the infection, say scientists.

Researchers hope that by better understanding how the potentially-fatal infection changes over time it will make it easier to treat.

The team wanted to confirm whether Pseudomona aeruginosa bacteria become more inactive during chronic lung infections in patients.

'This is fairly special because it's very long-lived. You can normally cure a in a week but for people with cystic fibrosis, a can persist for years,' explains Dr Ashleigh Griffin of the University of Oxford, lead researcher on the study published in Plos One.

'During chronic infections, bacteria will change their behaviour towards each other. It's interesting, because we can watch the change over time in patients.'

Griffin and her colleagues looked at four different so-called cooperative traits to see how the bacteria evolved during infections.

These included production of signal molecules bacteria use to communicate with other - called quorum sensing molecules, the concentration of protein-digesting molecules called proteases, the production of bright green pyoverdine, which is used to bind iron, and how good the bacteria were at forming biofilms. Biofilms are formed by groups of microorganisms in which cells stick to each other on a surface, in this case, a Cystic Fibrosis patients' lungs.

They found that the longer the bacteria had been infecting the lung, the fewer signals they sent out to other cells, the less biofilm they formed and the less pyoverdin they produced.

Pyoverdin is a bright green secretion which the bacteria use to bind iron, which is essential for their respiration.

'When cystic fibrosis sufferers first contract Pseudomona aeruginosa, it's what you might call healthy. It's making lots of this bright green pyoverdin, but over time it becomes very pale and quiet, as it's not making this molecule and it doesn't send out many signals. It seems odd because not communicating is not usually in the bacteria's best interest,' Griffin says.

Griffin explains that people have been very sceptical of the idea that the bacteria are getting themselves into a hole, where they can't make these molecules and the team have encountered resistance to this idea.

The team are now interested to understand whether the bacteria are adapting to the lung environment or forced to behave in a way that may harm them by competition with neighbouring bacterial cells of their own species. They think there may be alternative explanations for what they've seen.

'If bacteria don't need iron because the lung is an iron-rich environment, then they won't need to make this pyoverdin, or something else may be happening that means they don't need to signal to one another as much,' Griffin explains.

By understanding how these evolve, and why they choose certain behaviours over others, will make it easier for treatments to eventually be found.

Explore further: Bacterial food web may be key to cystic fibrosis

Related Stories

Bacterial food web may be key to cystic fibrosis

January 13, 2014

(Medical Xpress)—Cystic fibrosis patients suffer from chronic bacterial infections and thick mucous in their lungs, due largely to a combination of microbial infections and resulting inflammation. A common pathogen, Pseudomonas ...

Recommended for you

Synthetic 3D-printed material helps bones regrow

September 28, 2016

A cheap and easy to make synthetic bone material has been shown to stimulate new bone growth when implanted in the spines of rats and a monkey's skull, researchers said Wednesday.

Epigenetic clock predicts life expectancy

September 28, 2016

UCLA geneticist Steve Horvath led a team of 65 scientists in seven countries to record age-related changes to human DNA, calculate biological age and estimate a person's lifespan. A higher biological age—regardless of chronological ...

Engineered blood vessels grow in lambs

September 27, 2016

In a hopeful development for children born with congenital heart defects, scientists said Tuesday they had built artificial blood vessels which grew unaided when implanted into lambs, right into adulthood.

Fighting the aging process at a cellular level

September 22, 2016

It was about 400 BC when Hippocrates astutely observed that gluttony and early death seemed to go hand in hand. Too much food appeared to 'extinguish' life in much the same way as putting too much wood on a fire smothers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.