Motion-sensing cells in the eye let the brain 'know' about directional changes

eye

How do we "know" from the movements of speeding car in our field of view if it's coming straight toward us or more likely to move to the right or left?

Scientists have long known that our perceptions of the outside world are processed in our , the six-layered structure in the outer part of our brains. But how much of that processing actually happens in cortex? Do the eyes tell the brain a lot or a little about the content of the outside world and the objects moving within it?

In a detailed study of the neurons linking the eyes and brains of mice, biologists at UC San Diego discovered that the ability of our brains and those of other mammals to figure out and process in our brains directional movements is a result of the activation in the cortex of signals that originate from the direction-sensing in the retina of our eyes.

"Even though direction-sensing cells in the retina have been known about for half a century, what they actually do has been a mystery- mostly because no one knew how to follow their connections deep into the brain," said Andrew Huberman, an assistant professor of neurobiology, neurosciences and ophthalmology at UC San Diego, who headed the research team, which also involved biologists at the Salk Institute for Biological Sciences. "Our study provides the first direct link between direction-sensing cells in the retina and the cortex and thereby raises the new idea that we 'know' which direction things are moving specifically because of the activation of these direction-selective retinal neurons."

The study, recently published online, will appear in the March 20 print issue of Nature. The discovery of the link between direction-sensing cells in the retina and the cortex has a number of practical implications for neuroscientists who treat disabilities in motion processing, such as dysgraphia, a condition sometimes associated with dyslexia that affects direction-oriented skills.

"Understanding the cells and involved in sensing directional motion may someday help us understand defects in motion processing, such as those involved dyslexia, and it may inform strategies to treat or even re-wire these circuits in response to injury or common neurodegenerative diseases, such as glaucoma or Alzheimer's," said Huberman. He and his team discovered the link in mice by using new types of modified rabies viruses that were pioneered by Ed Callaway, a professor at the Salk Institute, and by imaging the activity of neurons deep in the brain during visual experience.

Related Stories

Scientists map the frontiers of vision

date Jan 06, 2012

There's a 3-D world in our brains. It's a landscape that mimics the outside world, where the objects we see exist as collections of neural circuits and electrical impulses.

Recommended for you

How we make emotional decisions

date 59 minutes ago

Some decisions arouse far more anxiety than others. Among the most anxiety-provoking are those that involve options with both positive and negative elements, such choosing to take a higher-paying job in a ...

Can we cure Huntington's disease?

date 3 hours ago

I didn't cry until page 123 of Lisa Genova's terrific new novel Inside the O'Briens. That's when 44-year-old Boston police officer Joe O'Brien tells his four young adult offspring that his "weird temper"; ...

Poor diet can cause Alzheimer's or Parkinson's in rats

date 4 hours ago

For several years, a researcher fed rodents in his laboratory a high caloric diet with glucose concentrations, which resulted in diabetes. By scientifically assessing what occurred in rats, Samuel Treviño ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.