Switching off anxiety with light

April 7, 2014
Switching off anxiety with light
Nerve cells containing the light-activated 5-HT1A receptor (green) and the naturally occuring 5-HT1A receptor (red). © RUB, image: Masseck

Receptors for the messenger molecule serotonin can be modified in such a way that they can be activated by light. Together with colleagues, neuroscientists from the Ruhr-Universität Bochum (RUB) report on this finding in the journal Neuron. An imbalance in serotonin levels seems to cause anxiety and depression. The researchers have provided a new model system for investigating the mechanism underlying these dysfunctions in cell cultures as well as living organisms.

G protein coupled receptors play an important role in medicine and health

One receptor, which is important for the regulation of in the brain, is the 5-HT1A receptor. It belongs to a protein family called G protein coupled (GPCRs). These receptors can activate different signalling pathways in cells to support or suppress various signalling events. "About 30 per cent of the current drugs target specifically GPCRs", says Prof Dr Stefan Herlitze from the Department of General Zoology and Neurobiology at the RUB. Due to the lack of tools to control intracellular signalling pathways with high temporal and spatial accuracy, it was so far difficult to analyse these pathways precisely.

Coupling of visual pigments to serotonin receptors

Applying optogenetic methods the scientists in Bochum used cone opsins from the mouse and human eye to control specifically signalling pathways either with blue or red light. Prof Dr Stefan Herlitze has been working with optogenetic techniques since 2005 and is one of the pioneers in the field. The light-activated serotonin receptors can be switched on within milliseconds, are extremely light sensitive in comparison to other optogenetic tools and can be repetitively activated. "We hope that with the help of these optogenetic tools, we will be able to gain a better understanding about how originate", states RUB neuroscientist Dr Olivia Masseck.

Successful behavioural tests

The scientists also demonstrated that they were able to modulate mouse emotional behaviour using the light-activated receptors. When they switched on the serotonergic signals by light in a certain brain area, the mice became less anxious.

Explore further: In the brain, broken down 'motors' cause anxiety

More information: O.A. Masseck, K. Spoida, D. Dalkara, T. Maejima, J.M. Rubelwoski, L. Wallhorn, E.S. Deneris, S. Herlitze (2014): Vertebrate cone opsins enable sustained and highly sensitive rapid control of Gi/o signaling in anxiety circuitry. Neuron, DOI: 10.1016/j.neuron.2014.01.041

Related Stories

In the brain, broken down 'motors' cause anxiety

February 7, 2013

When motors break down, getting where you want to go becomes a struggle. Problems arise in much the same way for critical brain receptors when the molecular motors they depend on fail to operate. Now, researchers reporting ...

How JC Polyomavirus invades cells

October 7, 2013

For more than a decade the research group of Brown University Professor Walter Atwood has doggedly pursued the workings of the JC polyomavirus, which causes a disease called PML that fatally degrades the central nervous system ...

Recommended for you

Scientists identify neurons devoted to social memory

September 30, 2016

Mice have brain cells that are dedicated to storing memories of other mice, according to a new study from MIT neuroscientists. These cells, found in a region of the hippocampus known as the ventral CA1, store "social memories" ...

Throwing light on the brain's perception of transparency

September 30, 2016

Researchers have created a new optical illusion that helps reveal how our brains determine the material properties of objects – such as whether they are transparent, shiny, matte or translucent – just from looking at ...

Scientists track unexpected mechanisms of memory

September 29, 2016

Do you remember Simone Biles's epic gymnastics floor routine that earned her a fifth Olympic medal? Our brains hold on to memories like these via physical changes in synapses, the tiny connections between neurons.

Some brains are blind to moving objects

September 28, 2016

As many as half of people are blind to motion in some part of their field of vision, but the deficit doesn't have anything to do with the eyes.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.