Seeking the causes of hyperactivity

by Mayumi Nishioka
Neurotransmitter receptors are withdrawn into the post-synaptic cell, where they are transported via membranous cell components called early endosomes (EEAs). This figure shows that LMTK3 is closely located with these EEAs, although the exact nature of that relationship is unknown. LMTK3 is shown in green and EEA1 is shown in red.

The 60 trillion cells that comprise our bodies communicate constantly. Information travels when chemical compounds released by some cells are received by receptors in the membrane of another cell. In a paper published in the Journal of Neuroscience, the OIST Cell Signal Unit, led by Professor Tadashi Yamamoto, reported that mice lacking an intracellular trafficking protein called LMTK3, are hyperactive. Hyperactivity is a behavioral disorder that shows symptoms including restlessness, lack of coordination, and aggressive behavior. Identifying the genetic factors that contribute to such behaviors may help to explain the pathological mechanisms underlying autism and Attention Deficit Hyperactivity Disorder, ADHD, in humans.

LMTK3 is abundant in two brain regions: the cerebral cortex, which coordinates perception, movement, and thought, and the hippocampus, which governs memory and learning. In the brain, neurons communicate via connections called synapses. To send a message, a nerve terminus in the pre-synapse releases neurotransmitters to be received by the post-synaptic receptors. Yamamoto's team discovered that LMTK3 regulates trafficking of at synapses. In neurons of mice deficient in LMTK3, internalization of receptors are augmented in the post-synapse, suggesting that synaptic communication is impaired. The LMTK3-deficient mice exhibited various hyperactive behaviors such as restlessness and hypersensitivity to sound. Interestingly, their were elevated. Dopamine is a neurotransmitter known to be involved in regulation of movement and hormone levels, motivation, learning, and expression of emotion. Excessive dopamine secretion results in schizophrenia, causing a loss of integrity of neuronal activity, and abnormal thoughts and emotions. The relationships between regulation of neurotransmitter receptor expression by LMTK3, dopamine turnover, and the biochemical pathways that induce hyperactivity, remain unknown.

LMTK3 and communication between neurons

Functions of many human proteins are still not understood. The Cell Signal Unit continues genetic studies of that maintain and regulate complex functions such as behaviors, through their activities inside cells. "We hope to advance our research in order to elucidate genetic defects that result in behavioral abnormalities," Yamamoto said.

More information: www.jneurosci.org/content/34/17/5927.short

add to favorites email to friend print save as pdf

Related Stories

Receptor limits the rewarding effects of food and cocaine

Jul 12, 2011

(Medical Xpress) -- Researchers have long known that dopamine, a brain chemical that plays important roles in the control of normal movement, and in pleasure, reward and motivation, also plays a central role in substance ...

Recommended for you

A new cause of mental disease?

2 hours ago

Astrocytes, the cells that make the background of the brain and support neurons, might be behind mental disorders such as depression and schizophrenia, according to new research by a Portuguese team from ...

Molecular basis of age-related memory loss explained

Jul 22, 2014

From telephone numbers to foreign vocabulary, our brains hold a seemingly endless supply of information. However, as we are getting older, our ability to learn and remember new things declines. A team of ...

The neurochemistry of addiction

Jul 22, 2014

We've all heard the term "addictive personality," and many of us know individuals who are consistently more likely to take the extra drink or pill that puts them over the edge. But the specific balance of ...

Study examines blood markers, survival in patients with ALS

Jul 21, 2014

The blood biomarkers serum albumin and creatinine appear to be associated with survival in patients with amyotrophic lateral sclerosis (ALS) and may help define prognosis in patients after they are diagnosed with the fatal ...

User comments