Rapid whole-brain imaging with single cell resolution

April 17, 2014

A major challenge of systems biology is understanding how phenomena at the cellular scale correlate with activity at the organism level. A concerted effort has been made especially in the brain, as scientists are aiming to clarify how neural activity is translated into consciousness and other complex brain activities. One example of the technologies needed is whole-brain imaging at single-cell resolution. This imaging normally involves preparing a highly transparent sample that minimizes light scattering and then imaging neurons tagged with fluorescent probes at different slices to produce a 3D representation. However, limitations in current methods prevent comprehensive study of the relationship. A new high-throughput method, CUBIC (Clear, Unobstructed Brain Imaging Cocktails and Computational Analysis), published in Cell, is a great leap forward, as it offers unprecedented rapid whole-brain imaging at single cell resolution and a simple protocol to clear and transparentize the brain sample based on the use of aminoalcohols.

In combination with light sheet fluorescence microscopy, CUBIC was tested for rapid imaging of a number of mammalian systems, such as mouse and primate, showing its scalability for brains of different size. Additionally, it was used to acquire new spatial-temporal details of gene expression patterns in the hypothalamic circadian rhythm center. Moreover, by combining taken from opposite directions, CUBIC enables whole imaging and direct comparison of brains in different environmental conditions.

CUBIC overcomes a number of obstacles compared with previous methods. One is the clearing and transparency protocol, which involves serially immersing fixed tissues into just two reagents for a relatively short time. Second, CUBIC is compatible with many fluorescent probes because of low quenching, which allows for probes with longer wavelengths and reduces concern for scattering when whole brain imaging while at the same time inviting multi-color imaging. Finally, it is highly reproducible and scalable. While other methods have achieved some of these qualities, CUBIC is the first to realize all.

CUBIC provides information on previously unattainable 3D gene expression profiles and neural networks at the systems level. Because of its rapid and high-throughput imaging, CUBIC offers extraordinary opportunity to analyze localized effects of genomic editing. It also is expected to identify neural connections at the whole brain level. In fact, last author Hiroki Ueda is optimistic about further application to even larger mammalian systems. "In the near future, we would like to apply CUBIC technology to whole-body imaging at single cell resolution".

Explore further: Movies synchronize brains

Related Stories

Movies synchronize brains

April 1, 2014

When we watch a movie, our brains react to it immediately in a way similar to other people's brains.

Seeing the brain at greater depth

August 9, 2013

Brain tissue is opaque, so classical microscopy methods require slicing the brain into ultra-thin slivers to allow light to shine through. Techniques have been developed to enhance brain tissue transparency, but the chemicals ...

Precision drugs sought for anxiety disorders

March 26, 2014

Researchers in the University of Helsinki, Finland, are striving to find out how cell communication regulating kainate receptors contribute to the susceptibility towards anxiety disorders. The intention is to also develop ...

Capturing brain activity with sculpted light

September 9, 2013

Scientists at the Campus Vienna Biocenter (Austria) have found a way to overcome some of the limitations of light microscopy. Applying the new technique, they can record the activity of a worm's brain with high temporal ...

Neutrons help visualising materials

April 8, 2014

New imaging methods will offer new possibilities to physicists, material scientists, engineers, palaeontologists, archaeologists, and others, so that they can obtain better information on their objects of study.

Recommended for you

The current state of psychobiotics

October 25, 2016

Now that we know that gut bacteria can speak to the brain—in ways that affect our mood, our appetite, and even our circadian rhythms—the next challenge for scientists is to control this communication. The science of psychobiotics, ...

After blindness, the adult brain can learn to see again

October 25, 2016

More than 40 million people worldwide are blind, and many of them reach this condition after many years of slow and progressive retinal degeneration. The development of sophisticated prostheses or new light-responsive elements, ...

Can a brain-computer interface convert your thoughts to text?

October 25, 2016

Ever wonder what it would be like if a device could decode your thoughts into actual speech or written words? While this might enhance the capabilities of already existing speech interfaces with devices, it could be a potential ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.