JHU biologists identify new neural pathway in eyes that aids in vision

eye

A type of retina cell plays a more critical role in vision than previously known, a team led by Johns Hopkins University researchers has discovered.

Working with mice, the scientists found that the ipRGCs – an atypical type of photoreceptor in the retina – help detect contrast between light and dark, a crucial element in the formation of visual images. The key to the discovery is the fact that the cells express melanopsin, a type of photopigment that undergoes a chemical change when it absorbs light.

"We are quite excited that melanopsin signaling contributes to vision even in the presence of functional rods and cones," postdoctoral fellow Tiffany M. Schmidt said. Schmidt is lead author of a recently published study in the journal Neuron. The senior author is Samer Hattar, associate professor of biology in the university's Krieger School of Arts and Sciences. Their findings have implications for future studies of blindness or impaired vision.

Rods and cones are the most well-known photoreceptors in the retina, activating in different light environments. Rods, of which there are about 120 million in the human eye, are highly sensitive to light and turn on in dim or low-light environments. Meanwhile the 6 million to 7 million cones in the eye are less sensitive to light; they drive vision in brighter light conditions and are essential for color detection.

Rods and cones were thought to be the only light-sensing photoreceptors in the retina until about a decade ago when scientists discovered a third type of retinal photoreceptor – the ipRGC, or intrinsically photosensitive cell – that contains melanopsin. Those cells were thought to be needed exclusively for detecting light for non-image-dependent functions, for example, to control synchronization of our internal biological clocks to daytime and the constriction of our pupils in response to light.

"Rods and cones were thought to mediate vision and ipRGCs were thought to mediate these simple light-detecting functions that happen outside of conscious perception," Schmidt said. "But our experiments revealed that ipRGCs influence a greater diversity of behaviors than was previously known and actually contribute to an important aspect of image-forming vision, namely contrast detection."

The Johns Hopkins team along with other scientists conducted several experiments with mice and found that when melanopin was present in the , the mice were better able to see contrast in a Y-shaped maze, known as the visual water task test. In the test, mice are trained to associate a pattern with a hidden platform that allows them to escape the water. Mice that had the melanopsin gene intact had higher contrast sensitivity than mice that lack the gene.

"Melanopsin signaling is essential for full contrast sensitivity in mouse ," said Hattar. "The ipRGCs and melanopsin determine the threshold for detecting edges in the visual scene, which means that visual functions that were thought to be solely mediated by rods and are now influenced by this system. The next step is to determine if melanopsin plays a similar role in the human retina for image-forming visual functions."

More information: Paper: www.cell.com/neuron/abstract/S… -6273%2814%2900252-9

add to favorites email to friend print save as pdf

Related Stories

Cell death in retina helps tune our internal clocks

Mar 05, 2013

(Medical Xpress)—With every sunrise and sunset, our eyes make note of the light as it waxes and wanes, a process that is critical to aligning our circadian rhythms to match the solar day so we are alert during the day and ...

Bright lights, not-so-big pupils

Dec 31, 2008

A team of Johns Hopkins neuroscientists has worked out how some newly discovered light sensors in the eye detect light and communicate with the brain. The report appears online this week in Nature.

Distribution of photoreceptors in the retina of mice

Dec 05, 2013

Guppies, hyenas and mice share one particular retinal specialization in their eye: Photoreceptors ("cones") sensitive to 'green' light are largely located in the top half of the eye, whereas cones sensitive to 'blue' light ...

Recommended for you

Neurons express 'gloss' using three perceptual parameters

Sep 19, 2014

Japanese researchers showed monkeys a number of images representing various glosses and then they measured the responses of 39 neurons by using microelectrodes. They found that a specific population of neurons ...

Scientists show rise and fall of brain volume

Sep 19, 2014

(Medical Xpress)—We can witness our bodies mature, then gradually grow wrinkled and weaker with age, but it is only recently that scientists have been able to track a similar progression in the nerve bundles ...

User comments