Mechanism of cell death unraveled—perspectives for treating inflammatory diseases

June 4, 2014

Researchers at VIB and Ghent University have unraveled the mechanism of necroptosis. This is a type of cell death that plays a crucial role in numerous diseases, from viral infections and loss of auditory nerve cells to multiple sclerosis, acute heart failure and organ transplantation. Having detailed knowledge of the cell death process enables a targeted search for new drugs.

Peter Vandenabeele (VIB/UGent): "The molecular mechanism of necroptosis was a complete mystery for a long time. Cells explode. But exactly how they do this was unclear. Now we have found that activate pore-forming molecules that make holes in the membrane. This basic research provides entirely new perspectives for the treatment of numerous chronic and acute inflammatory and degenerative diseases where necroptosis needs to be blocked. But it can also be useful to stimulate necroptosis in a controlled way, for example to circumvent the resistance of cancer cells to chemotherapy or to resensitize cancer cells to ."

Inflammatory reactions due to cell death

Many diseases are associated with dying cells. That is why understanding the cell death process is essential for the search for new medications. Peter Vandenabeele has many years of expertise in researching cell death, including with 'necroptosis'. In this type of cell death the cell explodes, as it were, and the cell content is released. This causes inflammatory reactions in the surrounding tissue.

Prior research shows that necroptosis occurs with a number of diseases, including viral infections, septic shock, detached retina, loss of auditory nerve cells, multiple sclerosis, acute heart failure, stroke, kidney failure and organ transplant complications. It also occurs in the presence of bad blood circulation and oxygen deficiency in the extremities or organs such as with atherosclerosis or type II diabetes.

A new therapeutic strategy: counteracting pore formation

Yves Dondelinger and Peter Vandenabeele discovered that the cellular explosion during necroptosis is paired with the formation of pores consisting of MLKL proteins. These MLKL pores are formed on the cell surface and cause the cells to absorb too much water. Because of this the cells ultimately explode. Detailed knowledge about how MLKL proteins create pores offers possibilities for developing medications for combatting or tolerating cell death by preventing or temporarily blocking this process.

Explore further: Link found between cell death and inflammatory disease

Related Stories

Molecule acts as umpire to make tough life-or-death calls

May 22, 2014

Researchers have demonstrated that an enzyme required for animal survival after birth functions like an umpire, making the tough calls required for a balanced response to signals that determine if cells live or die. St. Jude ...

Controlling cell death prevents skin inflammation

October 13, 2011

The outer layer of the skin, called the epidermis, forms a critical physical and immunological wall that serves as the body's first line of defense against potentially harmful microorganisms. Most of the epidermis consists ...

Recommended for you

Scientists reveal cellular clockwork underlying inflammation

August 27, 2015

Researchers at the Virginia Bioinformatics Institute at Virginia Tech have uncovered key cellular functions that help regulate inflammation—a discovery that could have important implications for the treatment of allergies, ...

New research finds ozone in smog may cause asthma

September 7, 2015

It's completely invisible, but the distinctive smell of electrical discharge after photocopying is a tell-tale sign of ozone in the air. Ozone is a component of what we refer to as 'smog' and on hot sunny days, in cities ...

Severe asthma fails to respond to mainstay treatment

June 29, 2015

The immune response that occurs in patients with severe asthma is markedly different than what occurs in milder forms of the lung condition, according to researchers from the University of Pittsburgh School of Medicine. Those ...

New hope for patients with chronic wounds

June 29, 2015

Most wounds clear up by themselves, but some fail to heal and become chronic. An international team of researchers led from Karolinska Institutet, now unveil the important role of so-called microRNAs in regulating skin wound ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.