Stem cells derived from different types of fat express different cell-surface markers

June 18, 2014
Stem cells derived from different types of fat express different cell-surface markers
Stem cells derived from distinct sources of fat display different cell-surface markers — with implications for their roles in metabolism and disease. Credit: Ugreen/iStock/Thinkstock

Mesenchymal stem cells (MSCs) have a natural ability to differentiate into various cell types, such as muscle, cartilage and bone. They can be classified according to their source and include adipose-derived stem cells (ASCs) and bone marrow-derived stem cells (BMSCs). ASCs, in particular, hold tremendous potential for tissue engineering and regenerative medicine because of their relatively high abundance and ease of isolation.

Shigeki Sugii at the A*STAR Singapore Bioimaging Consortium and co-workers have now isolated ASCs from two different sources of fat: subcutaneous fat found underneath the skin and from inside the abdominal cavity. The team showed that ASCs derived from subcutaneous fat express cell-surface markers that differ from those derived from visceral fat. The finding has implications for determining the origins of ASCs and the roles of their different subtypes in metabolism-related conditions, such as obesity, and diseases such as soft tissue tumors.

Stem cells, like all other cells, express molecules at their surface that are recognized by the body's immune system. Like a fingerprint, the expression profile of these cell-surface markers is unique to each stem cell type. Scientists already know that MSCs express the cell-surface markers CD73, CD90 and CD105 but not CD14, CD19, CD34 and CD45. Recent studies have also shown that while ASCs express CD36 but not CD106, the opposite is true for BMSCs. Thus, MSCs derived from different tissues express different cell-surface markers, providing a valuable tool for determining the origins of MSCs.

Sugii and co-workers therefore proposed that ASCs derived from different types of fat may also express different cell-surface markers. To investigate this, they extracted subcutaneous and visceral fat from 12 obese patients, as well as normal and obese mice. After isolating ASCs from the fat, the team analyzed the expression profiles of over 240 cell surface markers for each sample. Their analysis revealed a high level of CD10 expression in ASCs derived from subcutaneous fat compared to ASCs derived from visceral fat. In addition, they detected a high level of CD200 expression in ASCs derived from visceral fat compared to those derived from subcutaneous fat.

The researchers also discovered that while CD10-rich ASCs from differentiate better than their CD10-deficient counterparts, CD200-deficient ASCs from visceral fat differentiate better than their CD200-rich counterparts.

"Our results suggest that CD10 and CD200 are markers of high and low adipogenic capacities," says Sugii. "Therefore CD10 and CD200 are biomarkers as well as indicators of adipogenic potentials for use in high-throughput drug-screening systems."

Explore further: Repairing cartilage with fat: Problems and potential solutions

More information: Ong, W. K., Tan, C. S., Chan, K. L., Goesantoso, G. G., Chan, X. H. D. et al. "Identification of specific cell-surface markers of adipose-derived stem cells from subcutaneous and visceral fat depots." Stem Cell Reports 2, 172–179 (2014). dx.doi.org/10.1016/j.stemcr.2014.01.002

Related Stories

Decrease in fat cell volume improves insulin sensitivity

May 13, 2014

(HealthDay)—For obese women, a reduction in fat cell volume after bariatric surgery is strongly associated with improvement in insulin sensitivity, with the peak incidence seen among older women, according to a study published ...

Surgeries shorter in outpatient surgery centers

May 23, 2014

(HealthDay)—Outpatient surgeries take less time when performed in ambulatory surgery centers (ASCs) compared to hospitals, according to research published in the May issue of Health Affairs.

Recommended for you

We've all got a blind spot, but it can be shrunk

August 31, 2015

You've probably never noticed, but the human eye includes an unavoidable blind spot. That's because the optic nerve that sends visual signals to the brain must pass through the retina, which creates a hole in that light-sensitive ...

Biologists identify mechanisms of embryonic wound repair

August 31, 2015

It's like something out of a science-fiction movie - time-lapse photography showing how wounds in embryos of fruit flies heal themselves. The images are not only real; they shed light on ways to improve wound recovery in ...

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.