The bit of your brain that signals how bad things could be

An evolutionarily ancient and tiny part of the brain tracks expectations about nasty events, finds new UCL research.

The study, published in Proceedings of the National Academy of Sciences, demonstrates for the first time that the human habenula, half the size of a pea, tracks predictions about negative events, like painful electric shocks, suggesting a role in learning from bad experiences.

Brain scans from 23 healthy volunteers showed that the habenula activates in response to pictures associated with painful electric shocks, with the opposite occurring for pictures that predicted winning money.

Previous studies in animals have found that habenula activity leads to avoidance as it suppresses dopamine, a brain chemical that drives motivation. In animals, habenula cells have been found to fire when bad things happen or are anticipated.

"The habenula tracks our experiences, responding more the worse something is expected to be," says senior author Dr Jonathan Roiser of the UCL Institute of Cognitive Neuroscience. "For example, the habenula responds much more strongly when an electric shock is almost certain than when it is unlikely. In this study we showed that the habenula doesn't just express whether something leads to or not; it signals quite how much bad outcomes are expected."

During the experiment, healthy volunteers were placed inside a functional magnetic resonance imaging (fMRI) scanner, and brain images were collected at high resolution because the habenula is so small. Volunteers were shown a random sequence of pictures each followed by a set chance of a good or bad outcome, occasionally pressing a button simply to show they were paying attention. Habenula activation tracked the changing expectation of bad and good events.

"Fascinatingly, people were slower to press the button when the picture was associated with getting shocked, even though their response had no bearing on the outcome." says lead author Dr Rebecca Lawson, also at the UCL Institute of Cognitive Neuroscience. "Furthermore, the slower people responded, the more reliably their habenula tracked associations with shocks. This demonstrates a crucial link between the habenula and motivated behaviour, which may be the result of dopamine suppression."

The habenula has previously been linked to depression, and this study shows how it could be involved in causing symptoms such low motivation, pessimism and a focus on negative experiences. A hyperactive habenula could cause people to make disproportionately negative predictions.

"Other work shows that ketamine, which has profound and immediate benefits in patients who failed to respond to standard antidepressant medication, specifically dampens down habenula activity," says Dr Roiser. "Therefore, understanding the habenula could help us to develop better treatments for treatment-resistant depression."

More information: Proceedings of the National Academy of Sciences. DOI: 10.1073/pnas.1323586111

add to favorites email to friend print save as pdf

Related Stories

Getting a grip on sleep

May 14, 2013

All mammals sleep, as do birds and some insects. However, how this basic function is regulated by the brain remains unclear. According to a new study by researchers from the RIKEN Brain Science Institute, ...

Hyperactive nerve cells may contribute to depression

Feb 23, 2011

(PhysOrg.com) -- Scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, Cold Spring Harbor Laboratory, and the University of California, San Diego School of Medicine, have identified hyperactive ...

Recommended for you

'Chatty' cells help build the brain

6 hours ago

The cerebral cortex, which controls higher processes such as perception, thought and cognition, is the most complex structure in the mammalian central nervous system. Although much is known about the intricate ...

'Trigger' for stress processes discovered in the brain

21 hours ago

At the Center for Brain Research at the MedUni Vienna an important factor for stress has been identified in collaboration with the Karolinska Institutet in Stockholm (Sweden). This is the protein secretagogin ...

New research supporting stroke rehabilitation

Nov 26, 2014

Using world-leading research methods, the team of Dr David Wright and Prof Paul Holmes, working with Dr Jacqueline Williams from the Victoria University in Melbourne, studied activity in an area of the brain ...

User comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Sinister1812
4 / 5 (1) Jul 29, 2014
Sounds like part of the brain responsible for anxiety.
Scottingham
4 / 5 (1) Jul 29, 2014
Could this be used for more effective addiction treatment programs?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.