Distinctive developmental origin for a drainage tube in the eye

July 22, 2014
eye

A Jackson Laboratory based research team has conducted a comprehensive exploration of an eye structure known as Schlemm's canal: a key gatekeeper for the proper flow of eye fluid, presenting a number of insights relevant to glaucoma and other diseases.

For the study publishing July 22 in the Open Access journal PLOS Biology, the researchers at JAX and Tufts University School of Medicine in Boston developed a new, "whole-mount," three-dimensional approach to analyse mouse models that have been engineered to host fluorescent proteins, to determine how Schlemm's canal forms in the eye and in relation to neighbouring tissues.

Due to its roles in fluid flow and intraocular pressure, Schlemm's canal is directly involved in glaucoma, a blinding disease that affects more than 70 million people worldwide.

The report, according to first author Krishnakumar Kizhatil, Ph.D., an associate research scientist in the laboratory of JAX Professor and Howard Hughes Medical Investigator Simon W.M. John, Ph.D., "provides new understanding and tools that will facilitate molecular understanding of Schlemm's canal and its critical—but poorly understood—roles in ocular physiology, immunity and health."

The researchers show that Schlemm's canal forms from blood vessels by a novel process of vascular development that they name canalogenesis. Canalogenesis has some similarities to previously established processes of vascular development—namely angiogenesis, vasculogenesis and lymphangiogenesis—but also has unique features that make it distinct from each of them. They also identify the first molecule to be functionally implicated in early Schlemm's canal development, namely the KDR receptor, which is also known to play a key role in .

Importantly, the research demonstrates that the lining this drainage tube (called SECs) are novel, having a blend of properties of both of blood and lymphatic endothelial cells. "Thus, Schlemm's canal is a unique vessel with endothelial cells that are highly specialized for its complex functions," Kizhatil says. "This resolves a long-standing controversy about the cellular phenotype of SECs."

Study coauthor Jeffrey K. Marchant, Ph.D., a Tufts research assistant professor and a visiting investigator in the John lab, comments, "This study lays a critical new foundation for determining the functions of Schlemm's canal both in maintaining ocular health and when things go wrong in glaucoma."

Explore further: Targeted X-ray treatment of mice prevents glaucoma

More information: Kizhatil K, Ryan M, Marchant JK, Henrich S, John SWM (2014) Schlemm's Canal Is a Unique Vessel with a Combination of Blood Vascular and Lymphatic Phenotypes that Forms by a Novel Developmental Process. PLoS Biol 12(7): e1001912. DOI: 10.1371/journal.pbio.1001912

Related Stories

Targeted X-ray treatment of mice prevents glaucoma

March 19, 2012

Jackson Laboratory researchers have demonstrated that a single, targeted x-ray treatment of an individual eye in young, glaucoma-prone mice provided that eye with apparently life-long and typically complete protection from ...

New eye layer has possible link to glaucoma

February 16, 2014

A new layer in the human cornea—discovered by researchers at The University of Nottingham last year—plays a vital role in the structure of the tissue that controls the flow of fluid from the eye, research has shown.

New insights on conditions for new blood vessel formation

June 25, 2014

(Medical Xpress)—Angiogenesis, the sprouting of new blood vessels from pre-existing ones, is essential to the body's development. As organs grow, vascular networks must grow with them to feed new cells and remove their ...

Recommended for you

Flu study, on hold, yields new vaccine technology

September 2, 2015

Vaccines to protect against an avian influenza pandemic as well as seasonal flu may be mass produced more quickly and efficiently using technology described today by researchers at the University of Wisconsin-Madison in the ...

We've all got a blind spot, but it can be shrunk

August 31, 2015

You've probably never noticed, but the human eye includes an unavoidable blind spot. That's because the optic nerve that sends visual signals to the brain must pass through the retina, which creates a hole in that light-sensitive ...

Biologists identify mechanisms of embryonic wound repair

August 31, 2015

It's like something out of a science-fiction movie - time-lapse photography showing how wounds in embryos of fruit flies heal themselves. The images are not only real; they shed light on ways to improve wound recovery in ...

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.