Distinctive developmental origin for a drainage tube in the eye

eye

A Jackson Laboratory based research team has conducted a comprehensive exploration of an eye structure known as Schlemm's canal: a key gatekeeper for the proper flow of eye fluid, presenting a number of insights relevant to glaucoma and other diseases.

For the study publishing July 22 in the Open Access journal PLOS Biology, the researchers at JAX and Tufts University School of Medicine in Boston developed a new, "whole-mount," three-dimensional approach to analyse mouse models that have been engineered to host fluorescent proteins, to determine how Schlemm's canal forms in the eye and in relation to neighbouring tissues.

Due to its roles in fluid flow and intraocular pressure, Schlemm's canal is directly involved in glaucoma, a blinding disease that affects more than 70 million people worldwide.

The report, according to first author Krishnakumar Kizhatil, Ph.D., an associate research scientist in the laboratory of JAX Professor and Howard Hughes Medical Investigator Simon W.M. John, Ph.D., "provides new understanding and tools that will facilitate molecular understanding of Schlemm's canal and its critical—but poorly understood—roles in ocular physiology, immunity and health."

The researchers show that Schlemm's canal forms from blood vessels by a novel process of vascular development that they name canalogenesis. Canalogenesis has some similarities to previously established processes of vascular development—namely angiogenesis, vasculogenesis and lymphangiogenesis—but also has unique features that make it distinct from each of them. They also identify the first molecule to be functionally implicated in early Schlemm's canal development, namely the KDR receptor, which is also known to play a key role in .

Importantly, the research demonstrates that the lining this drainage tube (called SECs) are novel, having a blend of properties of both of blood and lymphatic endothelial cells. "Thus, Schlemm's canal is a unique vessel with endothelial cells that are highly specialized for its complex functions," Kizhatil says. "This resolves a long-standing controversy about the cellular phenotype of SECs."

Study coauthor Jeffrey K. Marchant, Ph.D., a Tufts research assistant professor and a visiting investigator in the John lab, comments, "This study lays a critical new foundation for determining the functions of Schlemm's canal both in maintaining ocular health and when things go wrong in glaucoma."

More information: Kizhatil K, Ryan M, Marchant JK, Henrich S, John SWM (2014) Schlemm's Canal Is a Unique Vessel with a Combination of Blood Vascular and Lymphatic Phenotypes that Forms by a Novel Developmental Process. PLoS Biol 12(7): e1001912. DOI: 10.1371/journal.pbio.1001912

add to favorites email to friend print save as pdf

Related Stories

New eye layer has possible link to glaucoma

Feb 16, 2014

A new layer in the human cornea—discovered by researchers at The University of Nottingham last year—plays a vital role in the structure of the tissue that controls the flow of fluid from the eye, research has shown.

Targeted X-ray treatment of mice prevents glaucoma

Mar 19, 2012

Jackson Laboratory researchers have demonstrated that a single, targeted x-ray treatment of an individual eye in young, glaucoma-prone mice provided that eye with apparently life-long and typically complete protection from ...

Recommended for you

Growing a blood vessel in a week

Oct 24, 2014

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

Oct 24, 2014

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments