NRG1 isoforms could be an effective therapeutic candidate to promote peripheral nerve regeneration

July 25, 2014

Neuregulin 1 (NRG1) is a pleiotropic factor characterized by the existence of numerous isoforms arising from alternative splicing of exons that confer to the protein deeply different characteristics. NRG1 plays an important role for both the myelination occurring during development and the different phases occurring after injury in the peripheral nerve: axon degeneration, axon regrowth, remyelination and target reinnervation

Researchers at the University of Western Australia have discovered that the soluble NRG1 upregulation observed in Schwann cells immediately after nerve injury suggests that denervated Schwann cells require autocrine stimulation with soluble NRG1 for survival and that the peripheral nerve regeneration impairment observed in animals lacking Schwann cell derived soluble NRG1 is the indirect consequence of problems occurring during the early phases of and axon regrowth, not during the following phases of remyelination and target reinnervation. These observations suggest that soluble NRG1 plays a role during the early phases following nerve injury corresponding to axon degeneration and regrowth, while transmembrane NRG1 plays a role during later phases corresponding to the remyelination process. Therefore, soluble NRG1, already used in human trials for heart failure treatment, could be an effective therapeutic candidate to promote regeneration. The Perspective article is released in Neural Regeneration Research.

Explore further: A gene implicated in schizophrenia risk is also associated with risk for cannabis dependence

More information: Gambarotta G, Ronchi G, Geuna S, Perroteau I. Neuregulin 1 isoforms could be an effective therapeutic candidate to promote peripheral nerve regeneration. Neural Regen Res. 2014;9(12):1183-1185.

Related Stories

Scientists identify clue to regrowing nerve cells

November 7, 2013

Researchers at Washington University School of Medicine in St. Louis have identified a chain reaction that triggers the regrowth of some damaged nerve cell branches, a discovery that one day may help improve treatments for ...

A new pathway for neuron repair is discovered

January 9, 2014

Penn State University molecular biologists have discovered a brand-new pathway for repairing nerve cells that could have implications for faster and improved healing. The researchers describe their findings in a paper titled ...

Recommended for you

Ketamine lifts depression via a byproduct of its metabolism

May 4, 2016

A chemical byproduct, or metabolite, created as the body breaks down ketamine likely holds the secret to its rapid antidepressant action, National Institutes of Health (NIH) scientists and grantees have discovered. This metabolite ...

High-fat diet starves the brain

April 29, 2016

A high-fat diet of three days in mice leads to a reduction in the amount of glucose that reaches the brain. This finding was reported by a Research Group led by Jens Brüning, Director at the Max Planck Institute for Metabolism ...

A vitamin that stops the aging process of organs

April 28, 2016

Nicotinamide riboside (NR) is pretty amazing. It has already been shown in several studies to be effective in boosting metabolism. And now a team of researchers at EPFL's Laboratory of Integrated Systems Physiology (LISP), ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.