Pseudogenes may provide clearer understanding of biomarkers

Alas, the thankless pseudogene. Dysfunctional, unloved and seemingly of little use, these poor-cousin relatives of genes have lost their protein-coding abilities. They contain material not essential for an organism's survival and are the "last stop" for removal of genomic waste.

Not any more. The pseudogene's day may have arrived thanks to scientists at The University of Texas MD Anderson Cancer Center in Houston.

Han Liang, Ph.D., an assistant professor in the Department of Bioinformatics and Computational Biology at the Cancer Center is advancing knowledge of these largely overlooked but increasingly attractive genetic oddities. He and his team completed a study that generated pseudogene expression profiles in 2,808 patient samples representing seven . That meant analyzing 378 billion RNA sequences to measure the expression levels of close to 10,000 pseudogenes.

The results indicated that the science of pseudogene expression analysis may very well play a key role in explaining how occurs by helping medical experts in the discovery of new . The study's findings appear in today's issue of Nature Communications.

Understanding of biomarkers is important for developing therapies that targeted specific tumor sites and for gaining new insight into how patients will fare with various cancers and treatments. Biomarkers are molecules that can indicate the presence of a condition or disease, and are increasingly being used to measure how the body responds to therapies. The emerging field of personalized medicine is built on customizing treatment for patients based on biomarkers.

Liang's study is novel in that understanding of pseudogenes relies on analyzing large numbers of patient samples. Previous studies have been limited by the size of the patient sample groups. Liang's team analyzed data made available from The Cancer Genome Atlas research program. The program is supported by the National Cancer Institute and National Human Genome Research Institute within the National Institutes of Health and is looking at genomic changes in more than 20 different types of cancer.

"The study surveyed seven cancer subtypes including those for breast, kidney, ovarian, colorectal, lung and uterine," said Liang. "Across the cancer types, the tumor subtypes revealed by pseudogene expression showed extensive and strong similarities with subtypes defined by other molecular data."

Liang believes that the study highlights the potential of pseudogene expression analysis as a new "gold standard" for investigating cancer mechanisms and discovering prognostic biomarkers. These biomarkers will allow to more accurately predict cancer survival rates.

"Pseudogene expression alone can accurately classify the major subtypes of endometrial cancer," said Liang. "Strikingly, in kidney cancer, the pseudogene expression subtypes not only significantly correlate with patient survival, but also help stratify patients in combination with clinical variables."

add to favorites email to friend print save as pdf

Related Stories

Ovarian cancer subtypes may predict response to bevacizumab

Jun 01, 2014

Molecular sequencing could identify ovarian cancer patients who are most likely to benefit from treatment with bevacizumab (Avastin), a Mayo Clinic-led study has found. Results of the research were presented today at the ...

Recommended for you

Study clarifies parents as source of new disease mutations

Jul 31, 2014

Scientists have long speculated that mosaicism – a biological phenomenon, in which cells within the same person have a different genetic makeup – plays a bigger role in the transmission of rare disease mutations than ...

How black truffles deal with the jumpers in their genome

Jul 31, 2014

The black truffle uses reversible epigenetic processes to regulate its genes, and adapt to changes in its surroundings. The 'methylome' - a picture of the genome regulation taking place in the truffle, is published in the ...

Gene research targets scarring process

Jul 28, 2014

Scientists have identified three genes that may be the key to preventing scar formation after burn injury, and even healing existing scars.

User comments