Splice-switching oligonucleotide therapeutics is new method for editing gene transcript

July 17, 2014

In splice-switching, an innovative therapeutic approach, targeted oligonucleotide drugs alter the editing of a gene transcript to produce the desired form of a protein. Developments in this rapidly advancing field have already led to promising treatments for such diseases as Duchenne Muscular Dystrophy and spinal muscular atrophy, as described in an article in Human Gene Therapy.

In "Development of Therapeutic Splice-Switching Oligonucleotides," Petra Disterer and coauthors from University College London, University of London, and Queen Mary University of London, UK, and Medical University of Warsaw, Poland, present an overview of the many possible therapeutic applications for splice-switching oligonucleotides. The authors discuss the design and chemical modification of these novel compounds to increase their stability and effectiveness, and emphasize the need to develop efficient solutions on a case by case basis.

"This is an emerging therapeutic area with promising clinical results," says James M. Wilson, MD, PhD, Editor-in-Chief of Human Gene Therapy, and Director of the Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia.

Explore further: Method to prevent rejection of disease-fighting proteins described

More information: online.liebertpub.com/doi/full/10.1089/hum.2013.234

Related Stories

Recommended for you

Study reveals the genetic start-up of a human embryo

September 3, 2015

An international team of scientists led from Sweden's Karolinska Institutet has for the first time mapped all the genes that are activated in the first few days of a fertilized human egg. The study, which is being published ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.