Method to prevent rejection of disease-fighting proteins described

August 7, 2012
Credit: ©2012, Mary Ann Liebert, Inc., publishers

The body's natural reaction to reject replacement proteins represents a major obstacle to the successful use of gene therapy to cure a range of life-threatening diseases. A novel method that uses the body's own immune cells to induce tolerance to a specific protein was shown to suppress the rejection response, as described in an article in Human Gene Therapy, a peer-reviewed journal from Mary Ann Liebert, Inc.

"A major limitation of protein and gene therapeutics is the associated immune responses which can cause toxicity and diminish efficacy," says James M. Wilson, MD, PhD, Editor-in-Chief, and Director of the Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia. "This clever use of immune modulators may prevent these untoward immune responses from happening."

Exposing a type of immune cell called dendritic cells to a specific therapeutic protein in the presence of immune-stimulating chemicals called cytokines leads to the creation of tolerogenic dendritic cells. These cells, when introduced into mice that are then given gene therapy designed to deliver the therapeutic protein of interest, allow the mice to tolerate, and not reject, the therapeutic protein.

Current approaches to induce partial or full tolerance to proteins replaced via are expensive and are unsuccessful in as many as 40% of cases. The method described in this article by Gautam Sule and colleagues from Baylor College of Medicine and Howard Hughes Medical Institute, Houston, TX, offers advantages to support the long-term success of gene therapies. The authors report their findings in "Cytokine-Conditioned Dendritic Cells Induce Humoral Tolerance to Therapy in Mice."

Explore further: Targeted gene therapy enhances treatment for Pompe disease

More information: online.liebertpub.com/doi/full … 10.1089/hum.2011.225

Related Stories

Targeted gene therapy enhances treatment for Pompe disease

June 25, 2012
Gene therapy to replace the protein missing in Pompe disease can be effective if the patient's immune system does not react against the therapy. Targeted delivery of the gene to the liver, instead of throughout the body,suppresses ...

Study could help improve gene therapy for heart disease, cancer

October 12, 2011
A Loyola University Chicago Stritch School of Medicine study could lead to improved gene therapies for conditions such as heart disease and cancer as well as more effective vaccines for tuberculosis, malaria and other diseases.

Gene therapy can correct forms of severe combined immunodeficiency

May 24, 2012
Severe combined immunodeficiency is defect in the immune system that results in a loss of the adaptive immune cells known as B cells and T cells. Mutations in several different genes can lead to the development of severe ...

Gene therapy is a 'disruptive science' ready for commercial development

January 24, 2012
The time for commercial development of gene therapy has come. Patients with diseases treatable and curable with gene therapy deserve access to the technology, which has demonstrated both its effectiveness and feasibility, ...

Recommended for you

Forgotten strands of DNA initiate the development of immune cells

September 21, 2017
Intricate human physiological features such as the immune system require exquisite formation and timing to develop properly. Genetic elements must be activated at just the right moment, across vast distances of genomic space.

Genome editing reveals role of gene important for human embryo development

September 20, 2017
Researchers have used genome editing technology to reveal the role of a key gene in human embryos in the first few days of development. This is the first time that genome editing has been used to study gene function in human ...

A piece of the puzzle: Eight autism-related mutations in one gene

September 19, 2017
Scientists have identified a hotspot for autism-related mutations in a single gene.

Scientists identify key regulator of male fertility

September 19, 2017
When it comes to male reproductive fertility, timing is everything. Now scientists are finding new details on how disruption of this timing may contribute to male infertility or congenital illness.

New assay leads to step toward gene therapy for deaf patients

September 18, 2017
Scientists at Oregon State University have taken an important step toward gene therapy for deaf patients by developing a way to better study a large protein essential for hearing and finding a truncated version of it.

Genomic recycling: Ancestral genes take on new roles

September 18, 2017
One often hears about the multitude of genes we have in common with chimps, birds or other living creatures, but such comparisons are sometimes misleading. The shared percentage usually refers only to genes that encode instructions ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.