Method to prevent rejection of disease-fighting proteins described

August 7, 2012
Credit: ©2012, Mary Ann Liebert, Inc., publishers

The body's natural reaction to reject replacement proteins represents a major obstacle to the successful use of gene therapy to cure a range of life-threatening diseases. A novel method that uses the body's own immune cells to induce tolerance to a specific protein was shown to suppress the rejection response, as described in an article in Human Gene Therapy, a peer-reviewed journal from Mary Ann Liebert, Inc.

"A major limitation of protein and gene therapeutics is the associated immune responses which can cause toxicity and diminish efficacy," says James M. Wilson, MD, PhD, Editor-in-Chief, and Director of the Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia. "This clever use of immune modulators may prevent these untoward immune responses from happening."

Exposing a type of immune cell called dendritic cells to a specific therapeutic protein in the presence of immune-stimulating chemicals called cytokines leads to the creation of tolerogenic dendritic cells. These cells, when introduced into mice that are then given gene therapy designed to deliver the therapeutic protein of interest, allow the mice to tolerate, and not reject, the therapeutic protein.

Current approaches to induce partial or full tolerance to proteins replaced via are expensive and are unsuccessful in as many as 40% of cases. The method described in this article by Gautam Sule and colleagues from Baylor College of Medicine and Howard Hughes Medical Institute, Houston, TX, offers advantages to support the long-term success of gene therapies. The authors report their findings in "Cytokine-Conditioned Dendritic Cells Induce Humoral Tolerance to Therapy in Mice."

Explore further: Targeted gene therapy enhances treatment for Pompe disease

More information: online.liebertpub.com/doi/full … 10.1089/hum.2011.225

Related Stories

Targeted gene therapy enhances treatment for Pompe disease

June 25, 2012
Gene therapy to replace the protein missing in Pompe disease can be effective if the patient's immune system does not react against the therapy. Targeted delivery of the gene to the liver, instead of throughout the body,suppresses ...

Study could help improve gene therapy for heart disease, cancer

October 12, 2011
A Loyola University Chicago Stritch School of Medicine study could lead to improved gene therapies for conditions such as heart disease and cancer as well as more effective vaccines for tuberculosis, malaria and other diseases.

Gene therapy can correct forms of severe combined immunodeficiency

May 24, 2012
Severe combined immunodeficiency is defect in the immune system that results in a loss of the adaptive immune cells known as B cells and T cells. Mutations in several different genes can lead to the development of severe ...

Gene therapy is a 'disruptive science' ready for commercial development

January 24, 2012
The time for commercial development of gene therapy has come. Patients with diseases treatable and curable with gene therapy deserve access to the technology, which has demonstrated both its effectiveness and feasibility, ...

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.