Stem cell type resists chemotherapy drug

July 2, 2014
Ten days after treatment with a medically appropriate dose of the chemotherapy drug MTX, adipose-derived stem cells, left, survive while normal human fibroblasts, right, are impaired. Insets show untreated control cells. Credit: Darling lab/Brown University

A new study shows that adipose-derived human stem cells, which can become vital tissues such as bone, may be highly resistant to the common chemotherapy drug methotrexate (MTX). The preliminary finding from lab testing may prove significant because MTX causes bone tissue damage in many patients.

MTX is used to treat cancers including acute lymphoblastic leukemia, the most common form of childhood cancer. A major side effect of the therapy, however, is a loss of . Other building stem cells, such as bone marrow derived stem cells, have not withstood MTX doses well.

"Kids undergo chemotherapy at such an important time when they should be growing, but instead they are introduced to this very harsh environment where are damaged with these drugs," said Olivia Beane, a Brown University graduate student in the Center for Biomedical Engineering and lead author of the study. "That leads to major long-term side effects including osteoporosis and bone defects. If we found a stem cell that was resistant to the chemotherapeutic agent and could promote bone growth by becoming bone itself, then maybe they wouldn't have these issues."

Stem cell survivors

Originally Beane was doing much more basic research. She was looking for chemicals that could help purify adipose-derived stem cells (ASCs) from mixed cell cultures to encourage their proliferation. Among other things, she she tried , figuring that maybe the ASCs would withstand a drug that other cells could not. The idea that this could help cancer patients did not come until later.

In the study published online in the journal Experimental Cell Research, Beane exposed pure human ASC cultures, "stromal vascular fraction" (SVF) tissue samples (which include several cell types including ASCs), and cultures of human fibroblast cells, to medically relevant concentrations of chemotherapy drugs for 24 hours. Then she measured how those cell populations fared over the next 10 days. She also measured the ability of MTX-exposed ASCs, both alone and in SVF, to proliferate and turn into other tissues.

Beane worked with co-authors fellow center member Eric Darling, the Manning Assistant Professor in the Department of Molecular Pharmacology, Physiology and Biotechnology, and research assistant Vera Fonseca.

They observed that three chemotherapy drugs—cytarabine, etoposide, and vincristine—decimated all three groups of cells, but in contrast to the fibroblast controls, the ASCs withstood a variety of doses of MTX exceptionally well (they resisted vincristine somewhat, too). MTX had little or no effect on ASC viability, cell division, senescence, or their ability to become bone, fat, or cartilage tissue when induced to do so.

The SVF tissue samples also withstood MTX doses well. That turns out to be significant, Darling said, because that's the kind of tissue that would actually be clinically useful if an ASC-based therapy were ever developed for cancer patients. Hypothetically, fresh SVF could be harvested from the fat of a donor, as it was for the study, and injected into bone tissue, delivering ASCs to the site.

To understand why the ASCs resist MTX, the researchers conducted further tests. MTX shuts down DNA biosynthesis by binding the protein dihydrofolate reductase so that it is unavailable to assist in that essential task. The testing showed that ASCs ramped up dihydrofolate reductase levels upon exposure to the drug, meaning they produced enough to overcome a clinically relevant dose of MTX.

Toward a therapy?

Now that the researchers are aware of ASC's ability to resist MTX, they are eager to see if they can make progress toward delivering a medical benefit for . They plan several more experiments.

One is to test ASC survival and performance after 48- and 72-hour exposures to MTX. Another is to begin examining how the cells fare in mouse models of chemotherapy. They also plan to directly compare ASCs and bone marrow-derived stem cells amid various chemotherapies.

Darling said his team hopes it can make a contribution by helping patients heal from chemotherapy, which does what it must, but at a cost.

"The first step is to save a life," he said. "Chemotherapies do a great job of killing cells and killing the cancer, and that's what you want. But then there is a stage after that where you need to do recovery and regeneration."

Further research will reveal whether can be part of that process.

Explore further: Repairing cartilage with fat: Problems and potential solutions

More information: The study abstract can be found here: www.sciencedirect.com/science/article/pii/S0014482714002626

Related Stories

Damage control: Recovering from radiation and chemotherapy

April 30, 2014

Researchers at the University of California, San Diego School of Medicine report that a protein called beta-catenin plays a critical, and previously unappreciated, role in promoting recovery of stricken hematopoietic stem ...

Better tissue healing with disappearing hydrogels

June 6, 2014

When stem cells are used to regenerate bone tissue, many wind up migrating away from the repair site, which disrupts the healing process. But a technique employed by a University of Rochester research team keeps the stem ...

Cancer uses stem cells as a shield to escape drug attacks

June 27, 2014

Chemotherapy is one of the most important treatments for all types of cancer. It involves the use of drugs that kill abnormally multiplying cells. The therapy uses one or more drugs in combination and has been practised since ...

Recommended for you

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.