Algae Provide New Clues to Cancer

October 13, 2006
Algae Provide New Clues to Cancer
In the unicellular green alga Chlamydomonas reinhardtii bursts of rapid division cycles produce clusters of daughter cells, a process that is controlled by the retinoblastoma (RB) tumor suppressor pathway.?The clusters with small cells are from a strain that is missing RB, and the clusters with large cells are missing a protein that is repressed by RB. Credit: James Umen, Salk Institute for Biological Studies

A microscopic green alga helped scientists at the Salk Institute for Biological Studies identify a novel function for the retinoblastoma protein (RB), which is known for its role as a tumor suppressor in mammalian cells. By coupling cell size with cell division, RB ensures that cells stay within an optimal size range.

Their findings, which will be published in the October 12 online edition of PLoS Genetics, show that RB blocks cells from dividing before they reach a minimum size and could provide new insights into the origins of cancer.

“Being the right size is very important for cells because their physiology changes quite dramatically when the surface-to-volume ratio changes,” explains senior author James Umen, Ph.D., an assistant professor and Hearst Endowment Chair in Salk’s Plant Biology Laboratory. “The human body is composed of trillions of cells, each of which must coordinate its growth and division in order to maintain size equilibrium,” he adds.

This process is very tightly regulated and any given cell type will always stay within a very narrow size range, but the means by which cell size is determined remain mysterious. In proliferating cells, control mechanisms termed checkpoints are thought to prevent cells from dividing until they reach a specific size, but the nature of the checkpoints has proved difficult to dissect.

Understanding how cells balance the opposing processes of growth and division in order to achieve size control is more than just a fascinating intellectual pursuit for cell biologists: loss of size control is a hallmark of cancer cells, which exhibit severe defects in regulating growth and division.

“In mammalian cells it is very hard to separate size control from cell cycle control because it is very easy to mess up cell size as an indirect consequence of manipulating cell cycle rates,” says Umen.

The tiny single-celled alga Chlamydomonas reinhardtii provided a model organism to study the link between cell size and growth. In nature, the organism is found in fresh and brackish water and in all kinds of soil. Its close relatives have adapted to the harsh conditions found in underwater thermal vents and even to life under the Antarctic ice shelf. In the lab, C. reinhardtii has been used to investigate agricultural, energy-related and medical questions.

Chlamydomonas is particularly well suited as an organism to dissect the control mechanisms behind cell size not only because of its simplicity but due to its peculiar cell cycle: during a prolonged growth phase cells enlarge to many times their original size and then suddenly divide several times in rapid succession. Despite this rapid-fire response, cell division is tightly controlled by a sizing mechanism that ensures daughter cells are never too large or too small.

In the course of earlier work, Umen identified an RB homolog encoded by the mat3 gene in C. reinhardtii and later discovered algal counterparts of other players in the RB pathway in humans and mice. To analyze their function in Chlamydomonas, the Salk team isolated cells with mutations in individual members of the RB signaling pathway – and things immediately started to go wrong.

Explains Umen, “Cells with mutations in the C. reinhardtii RB homolog start dividing prematurely, and continue dividing excessively, producing abnormally small daughter cells. Mutations in the algal versions of two key targets of the RB tumor suppressor have exactly the opposite effect of RB mutations, resulting in abnormally large cells that don’t divide when they should.” These findings demonstrate that once cells reach a critical size, they need those two RB target proteins to divide on schedule.

“The interesting thing for us is that the whole genetic module has been conserved from algae to plants to humans,” says Umen. “It’s been controlling cell division for well over a billion years. As multicellular organisms evolved, the RB pathway was co-opted to integrate growth factor signals, but its original purpose in single cells was more fundamental: to couple cell size to cell cycle progression,” he adds.

Recently, evidence has emerged that animal cells also have size checkpoints whose nature is still unknown. “Our results open up the possibility that the ancient size control function for the RB pathway we discovered in Chlamydomonas may still be there in animal cells, but was integrated into a larger network that also responds to extracellular input from growth factors. It will be an interesting challenge now to dissect out that function for RB in animal cells,” he says.

Researchers who contributed to this study include postdoctoral fellow and first author Su-Chiung Fang, Ph.D., and laboratory assistant Chris de los Reyes.

Soruce: Salk Institute for Biological Studies

Explore further: Injectable tissue patch could help repair damaged organs

Related Stories

Injectable tissue patch could help repair damaged organs

August 14, 2017
A team of U of T Engineering researchers is mending broken hearts with an expanding tissue bandage a little smaller than a postage stamp.

Team 3-D-prints first truly microfluidic 'lab on a chipl devices

August 14, 2017
Researchers at BYU are the first to 3D-print a viable microfluidic device small enough to be effective at a scale much less than 100 micrometers. Microfluidic devices are tiny chips that can sort out disease biomarkers, cells ...

Potential treatment for brain cancer as drug shrinks tumours

August 14, 2017
An international team of researchers has found a drug previously approved to treat breast cancer could also be used to shrink medulloblastoma, a common form of childhood brain tumour.

Dementia and brain research could be improved thanks to new sensor

August 14, 2017
Scientists have improved the way that brain activity data is collected in mice, which could advance dementia and brain research.

Microcephaly brain size linked to mutation in stem cell micro environment

August 9, 2017
New research highlights the significant role the surrounding environment of stem cells, known as the niche, might play in the brain size of babies with microcephaly.

Using miRNA to cure mature B cell neoplasia

August 9, 2017
Almost half of patients with mature B cell neoplasia are faced with the ineffectiveness of existing treatments. However, they may soon benefit from new therapeutic tools relying on miRNA—a small non-coding RNA molecule ...

Recommended for you

Genome analysis with near-complete privacy possible, say researchers

August 17, 2017
It is now possible to scour complete human genomes for the presence of disease-associated genes without revealing any genetic information not directly associated with the inquiry, say Stanford University researchers.

Science Says: DNA test results may not change health habits

August 17, 2017
If you learned your DNA made you more susceptible to getting a disease, wouldn't you work to stay healthy?

Genetic variants found to play key role in human immune system

August 16, 2017
It is widely recognized that people respond differently to infections. This can partially be explained by genetics, shows a new study published today in Nature Communications by an international collaboration of researchers ...

Phenotype varies for presumed pathogenic variants in KCNB1

August 16, 2017
(HealthDay)—De novo KCNB1 missense and loss-of-function variants are associated with neurodevelopmental disorders, with or without seizures, according to a study published online Aug. 14 in JAMA Neurology.

Active non-coding DNA might help pinpoint genetic risk for psychiatric disorders

August 16, 2017
Northwestern Medicine scientists have demonstrated a new method of analyzing non-coding regions of DNA in neurons, which may help to pinpoint which genetic variants are most important to the development of schizophrenia and ...

Evolved masculine and feminine behaviors can be inherited from social environment

August 15, 2017
The different ways men and women behave, passed down from generation to generation, can be inherited from our social environment - not just from genes, experts have suggested.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.