60 second test could help early diagnosis of common brain diseases

August 22, 2007

Until recently physicians have had to rely on time-consuming and uncertain behavioural examinations to diagnose the onset of brain diseases such as multiple sclerosis, Alzheimer's and schizophrenia.

Research published next week in the Institute of Physics' Journal of Neural Engineering suggests that we could soon be able to diagnose the onset of many brain diseases by analysing the tiny magnetic fields produced by neuron activity in the brain.

This is a significant breakthrough for neurologists and psychiatrists as it could present a fast and simple screening test for brain diseases, while also helping differentiate between different brain diseases that have similar symptoms.

A team of investigators from the University of Minnesota Medical School in Minneapolis, US, led by Professor Apostolos P. Georgopoulos, has been analysing the magnetic charges released when neuronal populations in our brains 'couple'. By comparing the patterns of tiny magnetic charges in healthy brains to those afflicted with common diseases such as Alzheimer's, the team has been able to identify the patterns commonly associated with these debilitating diseases.

A process called magnetoencephalography (MEG), a non-invasive measurement of magnetic fields in the brain, has been used to examine a total of 142 volunteers during tests which last between 45-60 seconds. The team first studied 52 volunteers to find patterns of neural activity that could identify all the different illnesses. They then tested a further 46 patients to see whether the patterns found from the first group could accurately diagnose disease within a second group. Here, many of the predictors found from the first set of participants also correctly diagnosed more than 90% of subjects in the second sample.

Professor Georgopoulos said, "We want to continue and acquire data from a large number of subjects - patients and matched controls. The throughput of this MEG test is large so we can continue a high rate of testing and we hope that clinical applications can become a reality in a year or two."

Diagnosing illnesses like Alzheimer's has always been very difficult, particularly in the early stages. Physicians are forced to rely on conversations with patients, memory tests, physical examinations and, occasionally, brain scans. It is sometimes not until post-mortem or after a biopsy that cause of illness can be confirmed.

Source: Institute of Physics

Explore further: Advances in brain imaging settle debate over spread of key protein in Alzheimer's

Related Stories

Advances in brain imaging settle debate over spread of key protein in Alzheimer's

January 5, 2018
Recent advances in brain imaging have enabled scientists to show for the first time that a key protein which causes nerve cell death spreads throughout the brain in Alzheimer's disease - and hence that blocking its spread ...

Researcher discovers commonalities in brains of people with HD and PD

January 12, 2018
A new study strongly suggests that the brains of people who have died of Huntington's disease (HD) and Parkinson's disease (PD) show a similar response to a lifetime of neurodegeneration, despite being two very distinct diseases.

Deep brain stimulation for the treatment of movement disorders

December 27, 2017
For the first time, researchers from Charité have shown that in patients with a type of movement disorder known as dystonia, a particular pattern of brain activity is linked to both the severity of symptoms and the clinical ...

Monthly brain cycles predict seizures in patients with epilepsy

January 8, 2018
UC San Francisco neurologists have discovered monthly cycles of brain activity linked to seizures in patients with epilepsy. The finding, published online January 8 in Nature Communications, suggests it may soon be possible ...

Revealing snapshots: Advanced imaging uncovers how the brain responds to vascular injury

January 2, 2018
Pericytes, a little-understood type of cell on the brain's blood vessels, grow into the empty space left when neighboring pericytes die, report researchers at the Medical University of South Carolina (MUSC) in a January 2nd, ...

Scientists reveal the structure of the zebrafish locomotor repertoire

January 5, 2018
In order to survive in a changing environment, animals and humans must integrate sensory information and their experience to select the most appropriate behavior for a given situation. This process is ultimately constrained ...

Recommended for you

Scientists emulate the human blood-retinal barrier on a microfluidic chip

January 24, 2018
For some years, scientists have been seeking ways to reduce animal testing and accelerate clinical trials. In vitro assays with living cells are an alternative, but have limitations, as the interconnection and interaction ...

Forces from fluid in the developing lung play an essential role in organ development

January 23, 2018
It is a marvel of nature: during gestation, multiple tissue types cooperate in building the elegantly functional structures of organs, from the brain's folds to the heart's multiple chambers. A recent study by Princeton researchers ...

Anemia discovery offers new targets to treat fatigue in millions

January 22, 2018
A new discovery from the University of Virginia School of Medicine has revealed an unknown clockwork mechanism within the body that controls the creation of oxygen-carrying red blood cells. The finding sheds light on iron-restricted ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.