Researchers find family of 'on switches' that cause prostate cancer

August 1, 2007

Researchers at the University of Michigan Comprehensive Cancer Center have discovered how genes turn on the switch that leads to prostate cancer.

The team discovered that pieces of two chromosomes can trade places with each other and cause two genes to fuse together. The fused genes then override the “off” switch that keeps cells from growing uncontrollably, causing prostate cancer to develop.

By testing these gene fusions in mice and in cell cultures, the researchers showed that the fusions are what cause prostate cancer to develop. But it’s not just one set of genes that fuse. The researchers found that any one of several in a family of genes can become scrambled and fuse. Results of the study appear in the Aug. 2 issue of Nature.

“Each of these switches, or gene fusions, represent different molecular subtypes. This tells us there’s not just one type of prostate cancer. It’s a more complex disease and potentially needs to be treated differently in each patient,” says lead study author Arul Chinnaiyan, M.D., Ph.D., director of the Michigan Center for Translational Pathology, a new U-M center whose goal is to translate research into real world practice.

The gene fusion research is the centerpiece project of the new center. In the current study, researchers found one of several abnormal gene fusions in the prostate cancer tissue samples they tested. In 2005, the researchers identified a prostate-specific gene called TMPRSS2, which fuses with either ERG or ETV1, two genes known to be involved in several types of cancer.

The Nature paper reports on five additional genes that fuse with ERG or ETV1 to cause prostate cancer. Gene fusions were involved in 60 percent to 70 percent of the prostate cancer cell lines the researchers looked at. The genes involved are all controlled by a different mechanism. For example, four of the genes are regulated by androgen, a male sex hormone known to fuel prostate cancer. Androgen deprivation is a common therapy for prostate cancer.

Knowing which gene fusion is involved in an individual patient’s tumor could impact treatment options. If an androgen-regulated gene is involved, androgen therapy would be appropriate. But if the gene fusion involves a gene that represses androgen, the anti-androgen therapy could encourage the cancer’s growth. This may also explain why androgen treatment is not effective for some prostate cancers.

“Typing someone’s prostate cancer by gene fusion can affect the treatment given. We would not want to give androgen to someone whose prostate cancer gene fusion is not regulated by androgen,” says Chinnaiyan, who is the S.P. Hicks Collegiate Professor of Pathology at the U-M Medical School.

Rearrangements in chromosomes and fused genes are known to play a role in blood cell cancers like leukemia and lymphoma, and in Ewing's sarcoma. A fused gene combination that plays a role in chronic myelogenous leukemia led researchers to develop the drug Gleevec, which has dramatically improved survival rates for that disease.

Chinnaiyan believes the prostate gene fusions will eventually lead to similar treatments for prostate cancer.

“More immediately, we hope to develop tests for diagnosis or prognosis. But long-term, we hope this will lead to better therapies to treat prostate cancer. The key challenge is to find a drug that would go after this gene fusion,” Chinnaiyan says.

The gene fusion technology has been licensed to San Diego-based Gen-Probe Inc., which is working on a screening tool to detect gene fusions in urine. The tool could one day supplement or replace the prostate specific antigen, or PSA, test currently used to screen for prostate cancer.

The idea of translating laboratory research findings into a test or treatment that will impact patients is central to the new Michigan Center for Translational Pathology. The center brings together experts in genomics, proteomics and bioinformatics to look at common patterns and potential targets in cancer and other diseases. This is the first center of its kind in the nation in that it is associated with one of 39 National Cancer Institute-designated “comprehensive” cancer centers, a premier medical school and a large health system with both clinicians and patients.

The center’s goal is to study the genes, proteins and other markers on cells to develop new diagnostic tests or screening tools as well as targeted treatments for cancer and other diseases, with the key being to translate these laboratory discoveries into clinical applications.

Chinnaiyan and his team have received numerous awards and honors, including the American Association for Cancer Research Team Science Award for their previously published work on gene fusions, and the Specialized Program of Research Excellence Outstanding Investigator award. The new Center for Translational Pathology supported in part by the Prostate Cancer Foundation, which has offered to match up to $1 million dollars in donations to support work related to developing therapies against prostate cancer gene fusions at the university.

“Mapping of the human genome was only the beginning. Equipped with the comprehensive analysis of the human genome, we can now systematically examine the blueprint of disease at the molecular level. This essential knowledge may lead to better diagnostic tests and promising new treatments for cancer, cardiovascular disease, diabetes and other illnesses,” Chinnaiyan says.

Source: University of Michigan

Explore further: Chad Carr's tumor offers genetic clues for DIPG research

Related Stories

Chad Carr's tumor offers genetic clues for DIPG research

September 14, 2017
A year and half after losing his battle against brain cancer, Chad Carr's legacy lives through research that will help other children facing the same cruel disease.

FDA approves personalized cellular therapy for advanced leukemia

August 30, 2017
In a landmark decision for the field of cancer immunotherapy, the U.S. Food and Drug Administration (FDA) today approved a personalized cellular therapy developed by the University of Pennsylvania and Children's Hospital ...

Genes may cause tumor aggressiveness and drug resistance in African-American prostate cancer

June 30, 2017
A form of genetic variation, called differential RNA splicing, may have a role in tumor aggressiveness and drug resistance in African American men with prostate cancer. Researchers at the George Washington University (GW) ...

Prostate cancer cells become 'shapeshifters' to spread to distant organs

August 8, 2017
Johns Hopkins Kimmel Cancer Center scientists report they have discovered a biochemical process that gives prostate cancer cells the almost unnatural ability to change their shape, squeeze into other organs and take root ...

Researchers propose new approach to identify genetic mutations in men with prostate cancer

June 29, 2017
Scientists have had limited success at identifying specific inherited genes associated with prostate cancer, despite the fact that it is one of the most common non-skin cancers among men. Researchers at University of Utah ...

Mutation in prostate tumors shown to change epigenetic identity, the make-up of DNA

August 7, 2017
Prostate cancer researchers have mapped the impact of an acquired mutation that alters epigenetic identity, the make-up of DNA, in about 50% of patient tumour samples. The discovery also identifies a new opportunity for ...

Recommended for you

Alternative splicing, an important mechanism for cancer

September 22, 2017
Cancer, which is one of the leading causes of death worldwide, arises from the disruption of essential mechanisms of the normal cell life cycle, such as replication control, DNA repair and cell death. Thanks to the advances ...

'Labyrinth' chip could help monitor aggressive cancer stem cells

September 21, 2017
Inspired by the Labyrinth of Greek mythology, a new chip etched with fluid channels sends blood samples through a hydrodynamic maze to separate out rare circulating cancer cells into a relatively clean stream for analysis. ...

Drug combination may improve impact of immunotherapy in head and neck cancer

September 21, 2017
Checkpoint inhibitor-based immunotherapy has been shown to be very effective in recurrent and metastatic head and neck cancer but only in a minority of patients. University of California San Diego School of Medicine researchers ...

Whole food diet may help prevent colon cancer, other chronic conditions

September 21, 2017
A diet that includes plenty of colorful vegetables and fruits may contain compounds that can stop colon cancer and inflammatory bowel diseases in pigs, according to an international team of researchers. Understanding how ...

New kinase detection method helps identify targets for developing cancer drugs

September 21, 2017
Purdue University researchers have developed a high-throughput method for matching kinases to the proteins they phosphorylate, speeding the ability to identify multiple potential cancer drug targets.

Brain cancer growth halted by absence of protein, study finds

September 20, 2017
The growth of certain aggressive brain tumors can be halted by cutting off their access to a signaling molecule produced by the brain's nerve cells, according to a new study by researchers at the Stanford University School ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.