How vitamin C stops the big 'C'

September 10, 2007

Nearly 30 years after Nobel laureate Linus Pauling famously and controversially suggested that vitamin C supplements can prevent cancer, a team of Johns Hopkins scientists have shown that in mice at least, vitamin C - and potentially other antioxidants - can indeed inhibit the growth of some tumors -- just not in the manner suggested by years of investigation.

The conventional wisdom of how antioxidants such as vitamin C help prevent cancer growth is that they grab up volatile oxygen free radical molecules and prevent the damage they are known to do to our delicate DNA. The Hopkins study, led by Chi Dang, M.D., Ph.D., professor of medicine and oncology and Johns Hopkins Family Professor in Oncology Research, unexpectedly found that the antioxidants’ actual role may be to destabilize a tumor’s ability to grow under oxygen-starved conditions. Their work is detailed this week in Cancer Cell.

“The potential anticancer benefits of antioxidants have been the driving force for many clinical and preclinical studies,” says Dang. “By uncovering the mechanism behind antioxidants, we are now better suited to maximize their therapeutic use.”

“Once again, this work demonstrates the irreplaceable value of letting researchers follow their scientific noses wherever it leads them,” Dang adds.

The authors do caution that while vitamin C is still essential for good health, this study is preliminary and people should not rush out and buy bulk supplies of antioxidants as a means of cancer prevention.

The Johns Hopkins investigators discovered the surprise antioxidant mechanism while looking at mice implanted with either human lymphoma (a blood cancer) or human liver cancer cells. Both of these cancers produce high levels of free radicals that can be suppressed by feeding the mice supplements of antioxidants, either vitamin C or N-acetylcysteine (NAC).

However, when the Hopkins team examined cancer cells from cancer-implanted mice not fed the antioxidants, they noticed the absence of any significant DNA damage. “Clearly, if DNA damage was not in play as a cause of the cancer, then whatever the antioxidants were doing to help was also not related to DNA damage,” says Ping Gao, Ph.D, lead author of the paper.

That conclusion led Gao and Dang to suspect that some other mechanism was involved, such as a protein known to be dependent on free radicals called HIF-1 (hypoxia-induced factor), which was discovered over a decade ago by Hopkins researcher and co-author Gregg Semenza, M.D., Ph.D., director of the Program in Vascular Cell Engineering. Indeed, they found that while this protein was abundant in untreated cancer cells taken from the mice, it disappeared in vitamin C-treated cells taken from similar animals.

“When a cell lacks oxygen, HIF-1 helps it compensate,” explains Dang. “HIF-1 helps an oxygen-starved cell convert sugar to energy without using oxygen and also initiates the construction of new blood vessels to bring in a fresh oxygen supply.”

Some rapidly growing tumors consume enough energy to easily suck out the available oxygen in their vicinity, making HIF-1 absolutely critical for their continued survival. But HIF-1 can only operate if it has a supply of free radicals. Antioxidants remove these free radicals and stop HIF-1, and the tumor, in its tracks.

The authors confirmed the importance of this “hypoxia protein” by creating cancer cells with a genetic variant of HIF-1 that did not require free radicals to be stable. In these cells, antioxidants no longer had any cancer-fighting power.

Source: Johns Hopkins Medical Institutions

Explore further: Is cancer just a question of 'bad luck'?

Related Stories

Is cancer just a question of 'bad luck'?

July 19, 2017
"Doctor, what caused my cancer?" For doctors, this question is often perplexing. Some of the population risk factors are known, but when it comes to specific cases, only assumptions can be made. However, scientists have a ...

Scientists identify chain reaction that shields breast cancer stem cells from chemotherapy

February 22, 2017
Working with human breast cancer cells and mice, researchers at Johns Hopkins say they have identified a biochemical pathway that triggers the regrowth of breast cancer stem cells after chemotherapy.

Vitamin C halts growth of aggressive forms of colorectal cancer in preclinical study

November 6, 2015
High levels of vitamin C kill certain kinds of colorectal cancers in cell cultures and mice, according to a new study from Weill Cornell Medicine investigators. The findings suggest that scientists could one day harness vitamin ...

Hijacking stress response in cancer

July 2, 2013
(Medical Xpress)—Cancer cells have alteration in metabolic pathways as a result of oncogenes that promote tumor growth. NRF2 (nuclear factor erythroid-derived 2-related factor 2) works as a "master gene" that turns on stress ...

Powerful class of antioxidants may be potent Parkinson's treatment

July 23, 2012
A new and powerful class of antioxidants could one day be a potent treatment for Parkinson's disease, researchers report.

Diets rich in antioxidant resveratrol fail to reduce deaths, heart disease or cancer

May 12, 2014
A study of Italians who consume a diet rich in resveratrol—the compound found in red wine, dark chocolate and berries—finds they live no longer than and are just as likely to develop cardiovascular disease or cancer as ...

Recommended for you

Researchers release first draft of a genome-wide cancer 'dependency map'

July 27, 2017
In one of the largest efforts to build a comprehensive catalog of genetic vulnerabilities in cancer, researchers from the Broad Institute of MIT and Harvard and Dana-Farber Cancer Institute have identified more than 760 genes ...

Cancer-death button gets jammed by gut bacterium

July 27, 2017
Researchers at Michigan Medicine and in China showed that a type of bacterium is associated with the recurrence of colorectal cancer and poor outcomes. They found that Fusobacterium nucleatum in the gut can stop chemotherapy ...

Long-sought mechanism of metastasis is discovered in pancreatic cancer

July 27, 2017
Cells, just like people, have memories. They retain molecular markers that at the beginning of their existence helped guide their development. Cells that become cancerous may be making use of these early memories to power ...

Manmade peptides reduce breast cancer's spread

July 27, 2017
Manmade peptides that directly disrupt the inner workings of a gene known to support cancer's spread significantly reduce metastasis in a mouse model of breast cancer, scientists say.

Blocking the back-door that cancer cells use to escape death by radiotherapy

July 27, 2017
A natural healing mechanism of the body may be reducing the efficiency of radiotherapy in breast cancer patients, according to a new study.

Glowing tumor technology helps surgeons remove hidden cancer cells

July 27, 2017
Surgeons were able to identify and remove a greater number of cancerous nodules from lung cancer patients when combining intraoperative molecular imaging (IMI) - through the use of a contrast agent that makes tumor cells ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.