Researchers test stem cell therapy for heart patients

October 4, 2007

University of Florida doctors on Wednesday treated their first patient enrolled in a new study designed to test whether injecting stem cells into the heart helps restore blood flow to the organ by prompting new blood vessels to grow.

UF researchers plan to test the experimental therapy in people with severe coronary artery disease and daily chest pain who have not responded to traditional medications or surgical procedures designed to restore blood flow, such as angioplasty or bypass surgery.

“The general idea is that by providing these cells of blood vessel origin, we hope to either generate new blood vessels from the growth of these implanted cells or stimulate the heart to regenerate new blood vessels from the cells that reside in it,” said study investigator Carl J. Pepine, M.D., chief of cardiovascular medicine at UF’s College of Medicine. “It’s not completely clear whether it’s the actual cell itself that would do this or whether it’s just the milieu and the chemical signals that occur from the cells that would result in this.”

Each year, nearly half a million Americans with heart disease experience severe chest pain because coronary arteries and the smaller vessels that supply oxygen-rich blood to the heart muscle become narrowed or blocked by plaque deposits or clots. These blockages can trigger mini-heart attacks that, while too small to be noticed as they occur, over time irreversibly damage the heart — leading to disability, progressive heart failure or even death.

In the prospective, double-blind, placebo-controlled study, known as the Autologous Cellular Therapy CD34-Chronic Myocardial Ischemia Trial, or ACT34-CMI, UF researchers will study 15 Shands at UF medical center patients to determine whether a person’s own stem cells can be used to effectively and safely treat chronic reductions in blood flow to the heart, improving symptoms and long-term outcomes. They also will evaluate whether participants report improved quality of life and exercise tolerance, and whether the heart functions better.

Participants will undergo screening tests and then receive a series of injections of a protein that releases stem cells from the bone marrow into the bloodstream. The cells, known as CD34+ stem cells, help spur blood vessel growth and are harvested from the patient during a procedure called apheresis, said Chris Cogle, an assistant professor of medicine at the UF’s College of Medicine Program in Stem Cell Biology and Regenerative Medicine.

Participants will then be randomly assigned to receive one of two dosing levels of the cells, or a placebo.

“Physicians will use a catheter-based electrical mapping system to find muscle they think is still viable but not functioning,” said R. David Anderson, an associate professor of medicine at UF and director of interventional cardiology. “The cells are injected into viable sites in the heart, which have poor blood flow, in the cardiac catheterization laboratory at Shands at UF medical center.”

Patients will be periodically evaluated by echocardiography and magnetic resonance imaging over the course of a year after the procedure. Although to date study subjects have tolerated this procedure well, potential risks include infection, allergic reactions, bleeding, blood clots and damage to the heart or its vessels.

UF is one of 20 research sites participating in the national study, which is evaluating a total of 150 patients and is sponsored by the Cellular Therapies business unit of Baxter Healthcare Corp. and led by principal investigator Douglas Losordo, M.D., of Northwestern University’s Feinberg School of Medicine. Baxter makes the cell-sorting equipment used to isolate the cells from the blood.

Pending Food and Drug Administration approval, UF researchers, through the National Heart, Lung and Blood Institute-funded Cardiovascular Cell Therapy Research Network, are gearing up to launch three other multicenter studies within the next several months that use other types of a patient’s own stem cells.

One trial focuses on patients who have had a heart attack within a week preceding study enrollment, another focuses on patients whose heart attack occurred within the preceding two to three weeks, and the third focuses on patients with congestive heart failure or chronic chest pain that has not responded to traditional treatment.

These studies will use stem cells taken directly from the patients’ bone marrow instead of stem cells isolated from the bloodstream, Pepine said, and will test whether various cell therapies can improve the heart’s plumbing by helping to repair blood vessels or form new ones and strengthen the heart muscle to improve its ability to pump efficiently.

Douglas E. Vaughan, M.D., chief of the division of cardiovascular medicine at Vanderbilt University Medical Center, said the study is important and targets a challenging group of patients who need new options.

“There’s a lot of enthusiasm in the cardiovascular community about the potential of cell-based therapies for the treatment of cardiovascular diseases,” Vaughan said, “and there is increasing experience around the world in using bone marrow-derived stem cells in patients with cardiovascular disease. There is growing confidence this is going to be a safe form of therapy, but there are continuing questions about how effective it will be and what its impact will be in individual patients.”

Source: University of Florida

Explore further: Insulin signaling molecule in liver controls levels of triglyceride in blood

Related Stories

Insulin signaling molecule in liver controls levels of triglyceride in blood

October 19, 2017
A new animal study shows how insulin controls the movement and storage of fat molecules in the liver and how a breakdown in this system could lead to non-alcoholic fatty liver disease and changes in circulating lipid levels ...

Mouse studies shed light on how protein controls heart failure

October 18, 2017
A new study on two specially bred strains of mice has illuminated how abnormal addition of the chemical phosphate to a specific heart muscle protein may sabotage the way the protein behaves in a cell, and may damage the way ...

Blood vessel 'master gene' discovery could lead to treatments for liver disease

October 16, 2017
Scientists have identified a key gene in blood vessels which could provide a new way to assess and potentially treat liver disease.

Blood cancer gene could be key to preventing heart failure

October 16, 2017
A new study, published today in Circulation, shows that the gene Runx1 increases in damaged heart muscle after a heart attack. An international collaboration led by researchers from the University of Glasgow, found that mice ...

Saving hearts after heart attacks: Overexpression of a gene enhances repair of dead muscle

October 17, 2017
University of Alabama at Birmingham biomedical engineers report a significant advance in efforts to repair a damaged heart after a heart attack, using grafted heart-muscle cells to create a repair patch. The key was overexpressing ...

Superior vena cava(SVC)-derived atrial fibrillation attributes clinical and genetic factor

October 18, 2017
Normally, the heart contracts and relaxes to a regular beat. In atrial fibrillation, the upper chambers of the heart beat irregularly, which affects blood flow into the two lower large chambers. This can lead to stroke, heart ...

Recommended for you

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.