Low dose of serotonin-acting chemical improves blood sugar tolerance

November 6, 2007

An appetite-suppressing chemical also improves glucose tolerance and lowers insulin levels in obese and diabetic mice, researchers report in the November issue of Cell Metabolism, a publication of Cell Press. Importantly, the researchers found, those effects of the drug occurred at a low dose that had no influence on feeding behavior, body weight, activity level, or energy expenditure.

The decades-old drug compound, known as m-chlorophenylpiperazine (mCPP), triggers serotonin receptors in the brain. The findings suggest a new strategy for treating the rising tide of people with type 2 diabetes via targeting the so-called serotonin 2C (5-HT2C) receptors.

“Though just a first step, this work provides a new direction in the search for novel pathways and molecules in the brain to target for the treatment of type 2 diabetes,” said Lora Heisler of the University of Cambridge. “The challenge now is to come up with drugs that selectively target 5-HT2C receptors safely and effectively.”

mCPP has primarily been used in scientific studies of the serotonin pathway and may not itself be appropriate for type 2 diabetes treatment due to its other known effects, Heisler added. Heisler’s collaborators included Joel Elmquist of the University of Texas Southwestern Medical Center and Andrew Butler of Louisiana State University System.

Serotonin is a chemical nerve messenger with effects on physiology and behavior, including mood, sleep, and appetite, that are mediated by multiple serotonin receptors clustered into seven distinct families that are widely expressed in the central and/or peripheral nervous systems, the researchers explained. Earlier studies had explored serotonin-acting drugs in treating obesity, but the possibility of a direct role for serotonin in the development and treatment of type 2 diabetes has received little attention, they said.

Earlier studies revealed that mice lacking the 5-HT2C receptor develop insulin resistance and type 2 diabetes and later overeat and become obese. In the current study, the researchers examined whether a drug that acts on 5-HT2C receptors could improve glucose tolerance. They show in mouse models of obesity and insulin resistance that the drug does improve blood sugar levels. Moreover, it does so even at concentrations that do not lead to reductions in food intake or body weight.

The researchers further report evidence that the serotonin-acting drug may work by stimulating “a-melanocyte-stimulating hormone” (a-MSH) in the brain’s arcuate nucleus, a portion of the hypothalamus important for appetite control. They show that the primary effect of the drug on glucose balance requires activation of one type of a-MSH receptor, called melanocortin-4 receptors (MC4R).

“Our findings add to emerging evidence that the brain may have important influences on glucose metabolism and insulin action,” Heisler added.

While the findings do link serotonin pathways to improved blood sugar tolerance, serotonin supplements would not produce this effect, Heisler noted. That’s because serotonin taken in through the diet cannot cross the blood-brain barrier to reach the critical receptors.

“The identification of new classes of antidiabetic agents is a clinical imperative,” the researchers concluded. “The findings presented here identify a novel therapeutic application for a class of pharmacological compounds developed more than two decades ago. We demonstrate that 5-HT2C receptor agonists significantly improve glucose tolerance and [lower insulin levels in mouse] models of obesity and type 2 diabetes via an MC4R-dependent mechanism. These findings not only delineate specific neuronal pathways of relevance to a highly prevalent metabolic disease but also suggest that 5-HT2C receptor agonists may prove an effective and mechanistically novel treatment for type 2 diabetes.”

Source: Cell Press

Explore further: Study explores a novel candidate for antidepressant treatment

Related Stories

Study explores a novel candidate for antidepressant treatment

January 17, 2018
According to the World Health Organization more than three hundred million people worldwide are affected by major depressive disorder. Unfortunately, the antidepressants commonly used to treat them only work for 50% of the ...

Genetic analysis can improve depression therapy

January 12, 2018
The failure of drugs such as SSRIs, used to treat depression, can be a result of genetic variations in patients. Variations within the gene that encodes the CYP2C19 enzyme results in extreme differences in the levels of escitalopram ...

Why a third of antidepressants are prescribed for something else

December 19, 2017
It was when he became a father that Michael Briggs resolved to somehow bring his ulcerative colitis under control. He was determined to avoid what many people with the disease end up needing – having part or all of their ...

Best of Last Year—The top Medical Xpress articles of 2017

December 20, 2017
It was a good year for medical research as a team at the German center for Neurodegenerative Diseases, Magdeburg, found that dancing can reverse the signs of aging in the brain. Any exercise helps, the team found, but dancing ...

Researchers studying use of nitrous oxide for patients hospitalized for suicide risk

November 10, 2017
Researchers at Washington University School of Medicine in St. Louis are studying the use of nitrous oxide—laughing gas—as a treatment for patients who are hospitalized due to suicidal thoughts. They are investigating ...

Serotonin-deficient brains more vulnerable to social stress

February 9, 2015
Mice genetically deficient in serotonin—a crucial brain chemical implicated in clinical depression—are more vulnerable than their normal littermates to social stressors, according to a Duke study appearing this week in ...

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.