Neurons use chemical 'chords' to shape signaling

February 27, 2008

Researchers have discovered that neurons can use two different neurotransmitters that target the same receptor on a receiving neuron to shape the transmission of a nerve impulse. Although the researchers’ experiments identified the “co-release” of the two neurotransmitters only in specific types of neurons in the brain’s auditory center, their finding may apply more broadly in the brain, they said. Thus, the finding may represent a new way in which the brain precisely modulates the nerve impulses that travel from neuron to neuron in its circuitry.

Tao Lu and colleagues Maria Rubio and Laurence Trussell reported their findings in the February 28, 2008, issue of the journal Neuron, published by Cell Press.

To propagate a nerve impulse within neural circuitry, one neuron launches a burst of chemical signal called a neurotransmitter at a receiving neuron, where the neurotransmitter attaches to a specific receptor—like a key fitting a lock. That neurotransmitter-specific receptor is activated to trigger a nerve impulse in the receiving neuron.

Such nerve impulses, however, rather than being the electrical equivalent of a shotgun blast, are precisely modulated signals, like the finely shaped notes of an orchestra.

In studies over the past several decades, researchers had found evidence for co-release of different neurotransmitters by the same neuron. But they had assumed that in such cotransmission, each neurotransmitter targeted its own receptor on the receiving neuron.

However, Lu and colleagues performed biochemical and electrophysiological experiments on rat neurons and established that two neurotransmitters—called GABA and glycine—both target the glycine receptor in specific types of neurons. The neurons they studied reside in the part of the rat auditory system that processes sound location. Thus, shaping the timing of the nerve impulse is important for such processing.

Glycine acts as an inhibitory neurotransmitter in such neurons, and Lu and colleagues found that GABA acts on the glycine receptor to accelerate glycine-produced inhibition.

Lu and colleagues wrote that, although their studies only establish the role of GABA/glycine cotransmission in the specialized auditory neurons, other studies had found evidence for cotransmission in other areas of the brain. Such findings hint that the two neurotransmitters may work in concert elsewhere “at a single receptor to enhance the temporal resolution of inhibition.”

“Of course, a hallmark of a great scientific study is the ability to approach an established problem from a fresh perspective,” wrote Joshua Singer in a preview of the article in the same issue of Neuron. “And certainly the present work by Lu, Rubio, and Trussell characterizes this.” Singer, who is at Northwestern University, asked, “Who would have thought that GABA [is a natural trigger for glycine receptors]" Not me, unfortunately.”

Source: Cell Press

Explore further: Why head and face pain causes more suffering

Related Stories

Why head and face pain causes more suffering

November 13, 2017
Hate headaches? The distress you feel is not all in your—well, head. People consistently rate pain of the head, face, eyeballs, ears and teeth as more disruptive, and more emotionally draining, than pain elsewhere in the ...

Deadly combination in neurodegenerative diseases revealed

November 13, 2017
Neurodegenerative diseases are incurable and debilitating conditions that result in progressive degeneration and death of nerve cells, which leads to problems with movement or mental functioning. Examples include Alzheimer's, ...

Research reveals biological mechanism of a leading cause of childhood blindness

November 16, 2017
Scientists at the Virginia Tech Carilion Research Institute (VTCRI) have revealed the pathology of cells and structures stricken by optic nerve hypoplasia, a leading cause of childhood blindness in developed nations.

Breakthrough research suggests potential treatment for autism, intellectual disability

November 13, 2017
A breakthrough in finding the mechanism and a possible therapeutic fix for autism and intellectual disability has been made by a University of Nebraska Medical Center researcher and his team at the Munroe-Meyer Institute ...

Rebuilding spinal cords with an engineer's toolkit

November 16, 2017
Like an earthquake that ruptures a road, traumatic spinal cord injuries render the body's neural highway impassable. To date, there are neither workable repairs nor detours that will restore signal flow between the brain ...

Shining a light on the nervous system to thwart disease

November 15, 2017
Researchers from Case Western Reserve University School of Medicine, Vanderbilt University, and University of Pittsburgh have received a four-year, $9 million grant from the National Institutes of Health to develop enhanced ...

Recommended for you

Hibernating ground squirrels provide clues to new stroke treatments

November 17, 2017
In the fight against brain damage caused by stroke, researchers have turned to an unlikely source of inspiration: hibernating ground squirrels.

Molecular guardian defends cells, organs against excess cholesterol

November 16, 2017
A team of researchers at the Harvard T. H. Chan School of Public Health has illuminated a critical player in cholesterol metabolism that acts as a molecular guardian in cells to help maintain cholesterol levels within a safe, ...

Prototype ear plug sensor could improve monitoring of vital signs

November 16, 2017
Scientists have developed a sensor that fits in the ear, with the aim of monitoring the heart, brain and lungs functions for health and fitness.

Ancient enzyme could boost power of liquid biopsies to detect and profile cancers

November 16, 2017
Scientists are developing a set of medical tests called liquid biopsies that can rapidly detect the presence of cancers, infectious diseases and other conditions from only a small blood sample. Researchers at The University ...

FDA to crack down on risky stem cell offerings

November 16, 2017
U.S. health authorities announced plans Thursday to crack down on doctors pushing stem cell procedures that pose the gravest risks to patients amid an effort to police a burgeoning medical field that previously has received ...

Engineering the gut microbiome with 'good' bacteria may help treat Crohn's disease

November 15, 2017
Penn Medicine researchers have singled out a bacterial enzyme behind an imbalance in the gut microbiome linked to Crohn's disease. The new study, published online this week in Science Translational Medicine, suggests that ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

SDMike
not rated yet Feb 28, 2008
I've taught physiological Psych for several years and never thought of the concept of "chord." This is an excellent concept. Students should easily understand how a sequence of chords contain considerably more information than single notes. The summation of individual synapses at a neuron in response to chord inputs convey the complexity of neural activity quite clearly. Kudos!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.