Researchers develop method to rapidly ID optimal drug cocktails

March 17, 2008

UCLA researchers have developed a feedback control scheme that can search for the most effective drug combinations to treat a variety of conditions, including cancers and infections. The discovery could play a significant role in facilitating new clinical drug-cocktail trials.

The best known use of drug cocktails has been in the fight against HIV, the virus that causes AIDS. Drug cocktails also have been used to combat several types of cancer. Often, drugs that might not be effective in combating diseases individually do much better in combination.

With the use of the new closed-loop feedback control scheme, an approach guided by a stochastic search algorithm, researchers at the UCLA Henry Samueli School of Engineering and Applied Science and UCLA's Jonsson Comprehensive Cancer Center have devised an invaluable means of identifying potent drug combinations fast and efficiently. Their findings appear in the March 17 online version of the journal Proceedings of the National Academy of Sciences.

It has long been a difficult challenge for clinical researchers to determine the optimal dose of individual drugs used in combination. For example, a researcher testing 10 different concentrations of six drugs in every possible arrangement would be faced with 1 million potential combinations.

"With the development of this optimization method, we've overcome a major roadblock," said study author Chih-Ming Ho, UCLA's Ben Rich-Lockheed Martin Professor and a member of the National Academy of Engineering. "There have always been too many choices and too many combinations to sort through. It was like finding a needle in a haystack."

In one test case, the research team examined how to best prevent a viral infection of host cells. Using the closed-loop optimization scheme, they were able to identify, out of 100,000 possible combinations, the drug cocktails that completely inhibited viral infection after only about a dozen trials. In addition, they found that total inhibition of the virus occurred at much lower drug doses than would be necessary if the drugs were used alone; in fact, the concentrations of the drugs were only about 10 percent of that required when used individually.

"Viruses grow very rapidly and change rapidly as well. Because of that, a virus can become resistant to a particular drug," said Genhong Cheng, a member of the research team at the UCLA Center for Cell Control and UCLA's Jonsson Comprehensive Cancer Center. "This is why it's so important to be able to use a combination of more than one drug. If the virus mutates to become resistant to one drug, it is still sensitive to the other drugs."

Drug combinations can also be used effectively to inhibit infectious diseases because resistance to a single drug is very common, according to Ren Sun, UCLA professor of molecular and medical pharmacology and a member of the research team.

"If we can apply multiple drugs against one infectious agent, it probably will prevent the occurrence of drug resistance," said Sun, who is also a researcher at the Jonsson Cancer Center. "But, of course, when you use multiple drugs, side effects will be strong. With this model, there is a way to optimize the combination to reduce the side effects while maintaining efficacy that will be very beneficial."

"What the search scheme does is it tries to detect trends for optimal output," said Pak Wong, a former UCLA graduate student who participated in the study and is now an assistant professor of mechanical engineering at the University of Arizona. "Basically, the algorithm sees a trend and a direction and drives the trend in that direction. It's like mountain climbing and finding a way to get to the peak. So you keep going, and soon you rapidly find the peak while being guided by a smart search scheme."

In an example used to illustrate the prevention of viral infection of host cells, researchers started with arbitrarily chosen dosages of the drugs. The percentage of non-infected cells under this initial drug-cocktail treatment was fed into the stochastic search algorithm, which essentially helps guide a random search process. The algorithm then suggested the next drug concentrations for producing a higher percentage of non-infected cells. This closed-loop feedback control scheme is carried out continuously until the best combination is found. Randomness is built into the search decision, preventing the trap at local optimum levels and allowing the search process to continue until the optimal drug cocktail is identified.

The model also provides an alternative approach to studying cellular functions. Molecular biologists can identify all the players of a particular regulatory pathway in order to decipher how to block or augment that pathway. Cells are complex systems with many redundant functions, and it is difficult to predict how a cell will respond to multiple stimulations at one time. The model overlooks these details and lets the system determine what works best for itself. If researchers are more interested in how the cellular network functions, this approach can provide an initial bird's-eye view, but it also allows them to home in on the important molecular activities controlled by the best drug combinations.

This search scheme is an extremely effective and versatile tool that can be applied to combat numerous diseases, including cancer, the researchers say, and its multidimensional properties will likely make it useful in a wide variety of additional situations.

The next steps are animal and clinical testing.

Source: University of California - Los Angeles

Explore further: Using nature's designs will speed up critical development of new antibiotics

Related Stories

Using nature's designs will speed up critical development of new antibiotics

February 23, 2018
"I did not invent penicillin. Nature did that. I only discovered it by accident.—Alexander Fleming

Study weighs risks and benefits of phase I trials in pediatric cancer

February 20, 2018
On average, 1 in 10 children who enroll in pediatric phase I cancer trials are improved after the trial, and 1 in 50 die from drug-related complications, according to a new systematic review and meta-analysis published this ...

Research could change how doctors treat leukemia and other cancers fed by fat

February 21, 2018
Obesity and cancer risk have a mysterious relationship, with obesity increasing the risk for 13 types of cancer. For some cancers—including pediatric cancers—obesity affects survival rates, which are lower for people ...

Breaking through the HIV vaccine 'logjam'

February 19, 2018
When biomolecular engineer Phil Berman began his postgraduate work in the 1980s, he had no idea he would spend the rest of his career searching for a way to stop a deadly virus that was then almost entirely known. But around ...

Architecture of cellular control center mTORC2 elucidated

February 20, 2018
The protein complex mTORC2 controls cellular lipid and carbohydrate metabolism. Researchers from the Biozentrum of the University of Basel and the ETH Zurich have now succeeded in deciphering the 3-D structure of this important ...

US hospitals testing experimental therapies to prevent two common bacterial infections

February 23, 2018
The National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, is supporting U.S. clinical sites participating in two ongoing international Phase 2 clinical trials evaluating ...

Recommended for you

Fabric imbued with optical fibers helps fight skin diseases

February 23, 2018
A team of researchers with Texinov Medical Textiles in France has announced that their PHOS-ISTOS system, called the Fluxmedicare, is on track to be made commercially available later this year. The system consists of a piece ...

Low-calorie diet enhances intestinal regeneration after injury

February 22, 2018
Dramatic calorie restriction, diets reduced by 40 percent of a normal calorie total, have long been known to extend health span, the duration of disease-free aging, in animal studies, and even to extend life span in most ...

Artificial intelligence quickly and accurately diagnoses eye diseases and pneumonia

February 22, 2018
Using artificial intelligence and machine learning techniques, researchers at Shiley Eye Institute at UC San Diego Health and University of California San Diego School of Medicine, with colleagues in China, Germany and Texas, ...

Gut microbes protect against sepsis—mouse study

February 22, 2018
Sepsis occurs when the body's response to the spread of bacteria or toxins to the bloodstream damages tissues and organs. The fight against sepsis could get a helping hand from a surprising source: gut bacteria. Researchers ...

Breakthrough could lead to better drugs to tackle diabetes and obesity

February 22, 2018
Breakthrough research at Monash University has shown how different areas of major diabetes and obesity drug targets can be 'activated', guiding future drug development and better treatment of diseases.

Fertility breakthrough: New research could extend egg health with age

February 22, 2018
Women have been told for years that if they don't have children before their mid-30s, they may not be able to. But a new study from Princeton University's Coleen Murphy has identified a drug that extends egg viability in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.