Scientists identify new leads for treating parasitic worm disease

March 16, 2008

A research team supported by the National Institutes of Health (NIH) Roadmap and the National Institute of Allergy and Infectious Diseases (NIAID) has identified chemical compounds that hold promise as potential therapies for schistosomiasis, a parasitic disease that afflicts more than 200 million people worldwide. The findings were reported today in the advance online publication of the journal Nature Medicine.

In their paper, researchers from Illinois State University (ISU) in Normal, Ill., and NIH’s Chemical Genomics Center (NCGC) report that chemical compounds known as oxadiazoles can inhibit an enzyme vital to survival of Schistosoma, a group of parasitic flatworms that cause schistosomiasis. The NCGC, established in 2004 by the NIH Roadmap for Medical Research, includes a set of strategic initiatives drawing collectively from the agency-wide research resources of NIH.

“New therapeutic agents are sorely needed if we hope to ease the burden of schistosomiasis on the world’s health,” said NIH Director Elias A. Zerhouni, M.D. “These findings exemplify what academic researchers can accomplish with access to translational infrastructure and technologies that have previously been beyond their reach.”

Schistosomiasis, also known as bilharzia or snail fever, affects an estimated 207 million people, most of whom live in developing nations in tropical areas. About 20 million of those people are seriously disabled due to severe anemia, diarrhea, internal bleeding and/or organ damage. In addition, another 280,000 die of the disease each year.

People become infected with Schistosoma when they wade, swim or bathe in fresh water inhabited by snails, which serve as the worms’ intermediate hosts. The microscopic worms enter the human body by boring through the skin and migrate into the blood vessels that supply the intestinal and urinary systems. After the worms mature and reproduce, their eggs are eliminated in human urine and feces. If human waste contaminated by worm eggs finds its way into fresh water, the cycle begins again.

Currently, people living in more than 70 tropical nations require annual or semi-annual drug treatment to rid their bodies of the parasite. Since the 1980s, praziquantel has effectively been the sole drug used for this purpose. Public health experts are concerned that the Schistosoma parasites will become resistant to praziquantel and the drug will lose its effectiveness, as has been the case for agents used to combat many other infectious diseases such as malaria and tuberculosis.

“The search for new drugs for schistosomiasis is imperative if we are to control this devastating disease that exacts an enormous toll, both in terms of human suffering and economic development,” said NIAID Director Anthony S. Fauci, M.D.

The new research, which was conducted with Schistosoma maintained in laboratory conditions, shows that an oxadiazole compound was effective in inhibiting a crucial worm enzyme, called thioredoxin glutathione reductase (TGR). Furthermore, in tests of laboratory mice infected with Schistosoma, this compound killed the parasite in all of its stages, from larva to adult. The results exceeded all benchmarks set by the World Health Organization for potential new compounds to treat schistosomiasis. Importantly, the researchers also showed that the compound was active against all three major species of Schistosoma worms that infect humans.

“This builds upon my lab’s previous findings that Schistosoma worms survive in the host due to a protective enzyme TGR. By teaming with NCGC, we were able to move our research one step closer to the clinic by identifying a class of compounds that specifically target that enzyme,” said the study’s lead researcher, David L. Williams, Ph.D., a professor of biology at ISU and NIAID grantee. “Still, much remains to be done. Our ultimate goal is to see our basic biological findings translated into help for people with schistosomiasis.”

The TGR project submitted to NCGC by Dr. Williams’ group was the first one officially accepted for screening by the NIH Roadmap Molecular Libraries Initiative. The results of that collaboration underscore the value of a new paradigm established by the NCGC, which is administered by the National Human Genome Research Institute (NHGRI). The high-tech center offers academic researchers, such as the ISU team, the opportunity to tap into a robotic system for quickly screening large numbers of chemical compounds for biological activity.

“Chemical genomic advances are being used to develop a new approach to a parasite that has afflicted countless generations of humankind,” said NHGRI Director Francis S. Collins, M.D., Ph.D. “This study showcases the beauty of high-throughput chemical screening for biomedical applications.”

NCGC Director Christopher P. Austin, M.D., who is a co-author of the Nature Medicine paper, said “Our center has brought pharmaceutical-scale chemical screening, informatics and medicinal chemistry to bear on neglected diseases that affect millions globally, but are not worked on by the pharmaceutical industry since they cannot generate the needed financial returns. This study demonstrates the wonderful things that can happen when the NCGC’s scientific capabilities and infrastructure are combined with the biological expertise of individual academic investigators.”

Source: National Human Genome Research Institute

Explore further: 'Ninja parasites' elude immune response through molecular mimicry

Related Stories

'Ninja parasites' elude immune response through molecular mimicry

March 8, 2013
(Medical Xpress)—In feudal-age Japan, cunning, unorthodox mercenaries known as ninjas were notorious for using disguise, deception, and stealth to infiltrate enemy fortifications. In the world of modern parasites, certain ...

Out of Africa: What is an allergen?

September 1, 2011
Some fundamental questions in allergy remain unanswered. Among them are ‘What exactly is an allergen?’ and ‘Why is the immune response so similar to that against parasitic worms?’ Researchers are examining ...

New mechanism found on how a parasite leads to cancer

January 17, 2013
About 200 million people across 75 of the poorest countries in the world are now infected by the blood parasite Schistosoma haematobium (S. haematobium). The infection causes severe urogenital disease, but also causes bladder ...

Recommended for you

Novel approach to track HIV infection

August 18, 2017
Northwestern Medicine scientists have developed a novel method of tracking HIV infection, allowing the behavior of individual virions—infectious particles—to be connected to infectivity.

Faulty gene linked to obesity in adults

August 18, 2017
Groundbreaking new research linking obesity and metabolic dysfunction to a problem in the energy generators in cells has been published by researchers from the Harry Perkins Institute of Medical Research and The University ...

Two lung diseases killed 3.6 million in 2015: study

August 17, 2017
The two most common chronic lung diseases claimed 3.6 million lives worldwide in 2015, according to a tally published Thursday in The Lancet Respiratory Medicine.

New test differentiates between Lyme disease, similar illness

August 16, 2017
Lyme disease is the most commonly reported vector-borne illness in the United States. But it can be confused with similar conditions, including Southern Tick-Associated Rash Illness. A team of researchers led by Colorado ...

Addressing superbug resistance with phage therapy

August 16, 2017
International research involving a Monash biologist shows that bacteriophage therapy – a process whereby bacterial viruses attack and destroy specific strains of bacteria - can be used successfully to treat systemic, multidrug ...

Can previous exposure to west Nile alter the course of Zika?

August 15, 2017
West Nile virus is no stranger to the U.S.-Mexico border; thousands of people in the region have contracted the mosquito-borne virus in the past. But could this previous exposure affect how intensely Zika sickens someone ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.