Gaining ground on sickle cell disease

July 15, 2008

Although sickle cell disease is a single-gene disorder, its symptoms are highly variable. In a study published online July 14 by the Proceedings of the National Academy of Sciences, scientists at Children's Hospital Boston and the Dana Farber Cancer Institute (DFCI), in collaboration with the Broad Institute of MIT and Harvard, report five gene variants that could potentially be helpful in predicting sickle cell disease severity, perhaps even leading to better treatment approaches in the future.

The gene variants influence blood levels of fetal hemoglobin (HbF), which are known to affect symptom severity in sickle cell disease—with some patients experiencing frequent, severe pain crises and organ damage, while others are scarcely aware of their disease.

"Our study is a first step towards a better understanding of fetal hemoglobin regulation in patients with sickle cell disease," says Guillaume Lettre, PhD, of the Broad Institute and Children's Hospital Boston, and co-first author on the paper. "But further validation experiments are needed before these findings can become useful in the clinic."

"Eventually, understanding the factors giving rise to heterogeneity in HbF levels might allow us to take severely affected patients and make them more like those with more benign symptoms," adds Vijay Sankaran, co-first author on the paper with Lettre and an MD-PhD student in the laboratory of Stuart Orkin, MD. (Orkin is chair of pediatric oncology at DFCI and a Howard Hughes Medical Institute investigator at Children's.)

In sickle cell disease, a single genetic mutation results in the production of an abnormal type of hemoglobin, the main component of red blood cells. The abnormal hemoglobin molecules tend to form long chains, causing red blood cells to become stiff and sickle-shaped. The distorted cells have difficulty passing through blood vessels and can block the smaller vessels, resulting in severe pain and eventual organ damage as tissues are robbed of their blood supply. The sickle-shaped red blood cells also have a very short lifespan, causing patients to be chronically anemic.

Previous research had established that retaining high levels of another type of hemoglobin—HbF, found at high levels in the fetus—can ameliorate sickle cell disease symptoms. At birth, HbF comprises between 50 to 95 percent of a child's hemoglobin, gradually declining as the switch is made to adult hemoglobin production -- consistent with clinicians' observations that newborns diagnosed with sickle cell disease usually do not become symptomatic until they are about a year old. Population studies in Saudi Arabia and parts of India had identified groups of sickle cell patients with very high levels of HbF and relatively benign forms of the disease, and additional epidemiologic studies led by Orah Platt, MD, chief of laboratory medicine at Children's, showed that HbF is an ameliorating factor. "The more you have, the better off you are," says Sankaran.

Studying 1600 patients with sickle cell disease, the researchers found that previously identified DNA sequence variants in three chromosome locations (small regions on chromosome 2, 6, and 11) were associated with high or low HbF levels. When they added these five variants to a model previously designed by Platt to predict disease severity, which also factors in age, sex, degree of anemia and HbF levels, the model's predictive ability was enhanced.

The findings need to be validated in large, prospective clinical studies, but the researchers are hopeful about the possible future clinical implications of their work. "As we find gene variants that regulate HbF levels or predict severity, we might eventually want to genotype patients for these variants, to get more predictive information on their disease," Sankaran says.

Finally, once this study is validated, understanding how these variants actually affect HbF levels might someday lead to new drugs that do the same thing. "If we can gain better insight into what these variants are doing, we may eventually have better, more targeted therapies for sickle cell disease," adds Sankaran.

Source: Children's Hospital Boston

Explore further: Antibiotic Rx adherence varies widely in sickle cell care

Related Stories

Antibiotic Rx adherence varies widely in sickle cell care

September 12, 2017
(HealthDay)—Adherence to antibiotic guidelines for acute chest syndrome (ACS) in children with sickle cell disease (SCD) varies widely, according to a study published online Sept. 11 in JAMA Pediatrics.

In utero stem cell transplants may replace riskier childhood transplants for multiple conditions

August 31, 2017
UCSF Benioff Children's Hospitals in San Francisco and Oakland will pioneer stem cell transplants for a uniquely challenging patient population: second-trimester fetuses stricken with a potentially fatal disease.

Researchers point way to improved stem cell transplantation therapies

September 7, 2017
Researchers in Germany have demonstrated that hematopoietic stem cell (HSC) transplants can be improved by treatments that temporarily prevent the stem cells from dying. The approach, which is described in a paper to be published ...

Scientists characterize regulatory DNA sequences responsible for human diseases

August 24, 2017
Scientists from the Children's Medical Center Research Institute at UT Southwestern (CRI) have developed an innovative system to identify and characterize the molecular components that control the activities of regulatory ...

Synthetic version of popular anticoagulant poised for clinical trials

September 6, 2017
A synthetic version of low molecular weight heparin is poised for clinical trials and development as a drug for patients with clotting disorders, and those undergoing procedures such as kidney dialysis, heart bypass surgery, ...

Researcher developing miniature models to explore cardiovascular, sickle cell disease

June 27, 2017
A Mississippi State University researcher is developing new miniature models to better understand the factors that lead to heart disease and sickle cell anemia.

Recommended for you

Researchers find way to convert bad body fat into good fat

September 19, 2017
There's good fat and bad fat in our bodies. The good fat helps burn calories, while the bad fat hoards calories, contributing to weight gain and obesity. Now, new research at Washington University School of Medicine in St. ...

New model may help science overcome the brain's fortress-like barrier

September 19, 2017
Scientists have helped provide a way to better understand how to enable drugs to enter the brain and how cancer cells make it past the blood brain barrier.

Cell-based therapy success could be boosted by new antioxidant

September 19, 2017
Cell therapies being developed to treat a range of conditions could be improved by a chemical compound that aids their survival, research suggests.

Study suggests epilepsy drug can be used to treat form of dwarfism

September 19, 2017
A drug used to treat conditions such as epilepsy has been shown in lab tests at The University of Manchester to significantly improve bone growth impaired by a form of dwarfism.

Research predicts how patients are likely to respond to DNA drugs

September 19, 2017
Research carried out by academics at Northumbria University, Newcastle could lead to improvements in treating patients with diseases caused by mutations in genes, such as cancer, cystic fibrosis and potentially up to 6,000 ...

Urine output to disease: Study sheds light on the importance of hormone quality control

September 18, 2017
The discovery of a puddle of mouse urine seems like a strange scientific "eureka" moment.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.